scholarly journals Asian Option Pricing with Monotonous Transaction Costs under Fractional Brownian Motion

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Di Pan ◽  
Shengwu Zhou ◽  
Yan Zhang ◽  
Miao Han

Geometric-average Asian option pricing model with monotonous transaction cost rate under fractional Brownian motion was established. The method of partial differential equations was used to solve this model and the analytical expressions of the Asian option value were obtained. The numerical experiments show that Hurst exponent of the fractional Brownian motion and transaction cost rate have a significant impact on the option value.

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Kaili Xiang ◽  
Yindong Zhang ◽  
Xiaotong Mao

Option pricing is always one of the critical issues in financial mathematics and economics. Brownian motion is the basic hypothesis of option pricing model, which questions the fractional property of stock price. In this paper, under the assumption that the exchange rate follows the extended Vasicek model, we obtain the closed form of the pricing formulas for two kinds of power options under fractional Brownian Motion (FBM) jump-diffusion models.


Author(s):  
A. I. Chukwunezu ◽  
B. O. Osu ◽  
C. Olunkwa ◽  
C. N. Obi

The classical Black-Scholes equation driven by Brownian motion has no memory, therefore it is proper to replace the Brownian motion with fractional Brownian motion (FBM) which has long-memory due to the presence of the Hurst exponent. In this paper, the option pricing equation modeled by fractional Brownian motion is obtained. It is further reduced to a one-dimensional heat equation using Fourier transform and then a solution is obtained by applying the convolution theorem.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yan Zhang ◽  
Di Pan ◽  
Sheng-Wu Zhou ◽  
Miao Han

The pricing problem of geometric average Asian option under fractional Brownian motion is studied in this paper. The partial differential equation satisfied by the option’s value is presented on the basis of no-arbitrage principle and fractional formula. Then by solving the partial differential equation, the pricing formula and call-put parity of the geometric average Asian option with dividend payment and transaction costs are obtained. At last, the influences of Hurst index and maturity on option value are discussed by numerical examples.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 828 ◽  
Author(s):  
Jixia Wang ◽  
Yameng Zhang

This paper is dedicated to the study of the geometric average Asian call option pricing under non-extensive statistical mechanics for a time-varying coefficient diffusion model. We employed the non-extensive Tsallis entropy distribution, which can describe the leptokurtosis and fat-tail characteristics of returns, to model the motion of the underlying asset price. Considering that economic variables change over time, we allowed the drift and diffusion terms in our model to be time-varying functions. We used the I t o ^ formula, Feynman–Kac formula, and P a d e ´ ansatz to obtain a closed-form solution of geometric average Asian option pricing with a paying dividend yield for a time-varying model. Moreover, the simulation study shows that the results obtained by our method fit the simulation data better than that of Zhao et al. From the analysis of real data, we identify the best value for q which can fit the real stock data, and the result shows that investors underestimate the risk using the Black–Scholes model compared to our model.


2021 ◽  
Vol 63 ◽  
pp. 123-142
Author(s):  
Yuecai Han ◽  
Zheng Li ◽  
Chunyang Liu

We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented. doi:10.1017/S1446181121000225


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 780-785 ◽  
Author(s):  
Sunday O. Edeki ◽  
Tanki Motsepa ◽  
Chaudry Masood Khalique ◽  
Grace O. Akinlabi

Abstract The Greek parameters in option pricing are derivatives used in hedging against option risks. In this paper, the Greeks of the continuous arithmetic Asian option pricing model are derived. The derivation is based on the analytical solution of the continuous arithmetic Asian option model obtained via a proposed semi-analytical method referred to as Laplace-Adomian decomposition method (LADM). The LADM gives the solution in explicit form with few iterations. The computational work involved is less. Nonetheless, high level of accuracy is not neglected. The obtained analytical solutions are in good agreement with those of Rogers & Shi (J. of Applied Probability 32: 1995, 1077-1088), and Elshegmani & Ahmad (ScienceAsia, 39S: 2013, 67–69). The proposed method is highly recommended for analytical solution of other forms of Asian option pricing models such as the geometric put and call options, even in their time-fractional forms. The basic Greeks obtained are the Theta, Delta, Speed, and Gamma which will be of great help to financial practitioners and traders in terms of hedging and strategy.


Sign in / Sign up

Export Citation Format

Share Document