scholarly journals Preparation of Smooth Surface TiO2Photoanode for High Energy Conversion Efficiency in Dye-Sensitized Solar Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sasipriya Kathirvel ◽  
Huei-Siou Chen ◽  
Chaochin Su ◽  
Hsiue-Hsyan Wang ◽  
Chung-Yen Li ◽  
...  

Dye-sensitized solar cells (DSSCs) based on a TiO2photoanode have been considered as an alternative source in the field of renewable energy resources. In DSSCs, photoanode plays a key role to achieve excellent photo-to-electric conversion efficiency. The surface morphology, surface area, TiO2crystal phase, and the dispersion of TiO2nanoparticles are the most important factors influencing the properties of a photoanode. The smooth TiO2surface morphology of the photoanode indicates closely packed arrangement of TiO2particles which enhance the light harvesting efficiency of the cell. In this paper, a smooth TiO2photoanode has been successfully prepared using a well-dispersed anatase TiO2nanosolviaa simple hydrothermal process. The above TiO2photoanode was then compared with the photoanode made from commercial TiO2nanoparticle pastes. The morphological and structural analyses of both the aforementioned photoanodes were comprehensively characterized by scanning electron microscopy and X-ray diffraction analysis. The DSSC fabricated by using a-TiO2nanosol-based photoelectrode exhibited an overall light conversion efficiency of 7.20% and a short-circuit current density of 13.34 mA cm−2, which was significantly higher than those of the DSSCs with the TiO2nanoparticles-based electrodes.

2007 ◽  
Vol 31 ◽  
pp. 176-178
Author(s):  
Hyeon Seok Lee ◽  
Heon Yong Lee ◽  
S.Y. Ahn ◽  
K.H. Kim ◽  
J.Y. Kwon

We fabricated improved carbon counter electrodes to improve conversion efficiency of dye sensitized solar cells (DSSCs). Unlike conventional carbon counter electrodes, we added small quantity of TiO2 nano powder and used chemical sintering methodology developed by Park’s group to make surface morphology of the electrodes to change. Through these methods, we could observe change of surface morphology of carbon electrodes and influences on short circuit current density (JSC) and conversion efficiency.


2008 ◽  
Vol 8 (9) ◽  
pp. 4761-4766 ◽  
Author(s):  
Dong Wook Kim ◽  
Jin Joo Choi ◽  
Man Ku Kang ◽  
Yongku Kang ◽  
Changjin Lee

We prepared organic sensitizers (S1 and S2) containing julolidine moiety as a donor, phenyl or phenylene thiophene units as a conjugation bridge, and cyano acetic acid as an acceptor for dye sensitized solar cells. S1 exhibited two absorption maxima at 441 nm (ε = 26 200) and 317 nm (ε = 15 500) due to the π–π* transition of the dye molecule. S2 dyes with an additional thiophene unit showed the absorption maximum extended by 18 nm. DSSCs based on S1 dye achieved 2.66% of power conversion efficiency with 8.3 mA cm−2 of short circuit current, 576 mV of open circuit voltage, and 0.56 of fill factor. DSSCs using S2 dye with a longer conjugation attained only 1.48% of power conversion efficiency. The 0.21 V lower driving force for regeneration of the S2 dye compared to the S1 dye is one of the reasons for low conversion efficiency of the S2 dye.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mengmei Pan ◽  
Hanjun Liu ◽  
Zhongyu Yao ◽  
Xiaoli Zhong

Trace amount Ca-doped TiO2films were synthesized by the hydrothermal method and applied as photoanodes of dye-sensitized solar cells (DSSCs). To prepare Ca-doped TiO2film electrodes, several milliliters of Ca(NO3)2solution was added in TiO2solution during the hydrolysis process. The improvements of DSSCs were confirmed by photocurrent density-voltage (J-V) characteristics, electrochemical impedance spectroscopy (EIS) measurements. Owing to the doping effect of Ca, the Ca-doped TiO2thin film shows power conversion efficiency of 7.45% for 50 ppm Ca-doped TiO2electrode, which is higher than that of the undoped TiO2film (6.78%) and the short-circuit photocurrent density(Jsc)increases from 13.68 to 15.42 mA·cm−2. The energy conversion efficiency and short-circuit current density(Jsc)of DSSCs were increased due to the faster electron transport in the Ca-doped TiO2film. When Ca was incorporated into TiO2films, the electrons transport faster and the charge collection efficiencyηccis higher than that in the undoped TiO2films.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Joe Otsuki ◽  
Yusho Takaguchi ◽  
Daichi Takahashi ◽  
Palanisamy Kalimuthu ◽  
Surya Prakash Singh ◽  
...  

We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE) spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc) of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2) and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450039 ◽  
Author(s):  
Liqing Zhang ◽  
Shuai Zhou ◽  
Fengshi Cai ◽  
Zhihao Yuan

ZnO / TiO 2 composite films composed of a ZnO nanoflowers overlayer and a ZnO / TiO 2 composite particulate underlayer were fabricated by a simple hydrothermal process. The as-prepared films were characterized by scanning electron microscopy, transmission electron microscopy (TEM) and diffused reflectance spectroscopy. The performance of dye-sensitized solar cells (DSCs) was investigated by photocurrent–voltage measurements, incident photon-to-current conversion efficiency (IPCE) and electrochemical impedance spectroscopy. It was found that the ZnO / TiO 2 composite film prepared with a 60 min growth time exhibited higher reflectivity than that of pure TiO 2 film due to the effective light-scattering of ZnO nanoflowers, resulting in increased J sc . In the meantime, the open-circuit potential of the device were enhanced from 698 to 826 mV due to the formation of an energy barrier by ZnO at TiO 2/electrolyte interface, resulting in a 52% improvement in the power conversion efficiency from 4.64 to 7.06%.


NANO ◽  
2014 ◽  
Vol 09 (06) ◽  
pp. 1450061 ◽  
Author(s):  
MUHAMMAD SALEEM ◽  
L. FANG ◽  
M. ASHFAQ AHMAD ◽  
RIZWAN RAZA ◽  
F. WU ◽  
...  

Zinc oxide ( ZnO ) nanowire (NW) films were synthesized at low temperature (95°C) through amine-assisted solution process and used as photoanode for the fabrication of dye-sensitized solar cells (DSSCs). It was found that with the addition of polyethyleneimine (PEI) and ammonium hydroxide ( NH 4 OH ) in growth solution, the NWs were smaller in diameter and longer in length by prolonging the growth time without refreshing the growth solution. A reasonable overall conversion efficiency of 1.25% was achieved with photoanode based on ZnO NWs containing PEI and NH 4 OH . However, DSSC fabricated with ZnO NWs not containing PEI and NH 4 OH showed low conversion efficiency of 0.58%. All the DSSCs exhibited almost similar values of open circuit voltage (V OC ) and fill factor (FF). Interestingly, DSSC based on ZnO NWs with PEI and NH 4 OH obtained two times higher short circuit current density (J SC ) compared to ZnO NWs photoanode without PEI and NH 4 OH . The increase in efficiency and J SC with the length of NWs is attributed to the increase in internal surface area for sufficient dye loading and light harvesting.


2013 ◽  
Vol 06 (02) ◽  
pp. 1350017 ◽  
Author(s):  
JUN LIU ◽  
ZHEN LIU ◽  
KANGBAO LIN ◽  
AIXIANG WEI

Highly oriented single-crystalline rutile TiO2 nanowires on transparent conductive fluorine-doped tin oxide (FTO) substrates are prepared by low-temperature hydrothermal method. The small lattice mismatch between FTO substrate and rutile TiO2 promote the epitaxial nucleation and growth of rutile TiO2 nanowires on FTO, with the diameter of 4–6 nm. Due to Van der waals force, the ultrafine nanowires tend to gather together, forming nanowire bundles. Using the ultrafine nanowire bundle array as the photoanode and ruthenium complex (N719) as the sensitizer, dye-sensitized solar cells (DSSCs) are assembled. The effect of the TiO2 nanowire gathering on the power conversion of the DSSCs has been investigated. Experimental result shows that the light-to-electricity conversion efficiency is increased by reducing the gathering of the nanowires through introducing toluene into reactant precursors. The DSSCs based on the bundles with smallest average width (i.e., least nanowire gathering) show the highest power conversion efficiency of 3.70%. The relatively high energy conversion efficiency is contributed to the large surface area, which enhances the adsorption of dye molecules.


Sign in / Sign up

Export Citation Format

Share Document