scholarly journals Speed of Sound Parameter from RHIC and LHC Heavy-Ion Data

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-Na Gao ◽  
Ya-Hui Chen ◽  
Hua-Rong Wei ◽  
Fu-Hu Liu

In framework of combing the participant-spectator model and the Landau hydrodynamic model, the pseudorapidity distributions of charged particles produced in heavy-ion (or nucleus-nucleus) collisions at RHIC and LHC energies are described by a modified Landau hydrodynamic model, where the Landau hydrodynamic model is applied to the target/projectile spectators and the target/projectile participants, respectively. The modeling results are in agreement with the PHOBOS and ALICE experimental data. Then, the values of square speed of sound (cs2) for the participants and spectators can be obtained from the widths of charged particle pseudorapidity distributions. Some features ofcs2for different centralities and center-of-mass energies are obtained too.

2014 ◽  
Vol 29 (27) ◽  
pp. 1450130 ◽  
Author(s):  
Z. J. Jiang ◽  
H. L. Zhang

In p–p collisions there are two leading particles, one in the projectile and the other in the target fragmentation region. In this paper we show that, just like in nucleus–nucleus collisions, the revised Landau hydrodynamic model alone does not provide a good enough description of the measured pseudorapidity distributions of charged particles produced in p–p collisions. Only after the leading particles are taken into account can the experimental data be properly matched with the theoretical model in the entire available energy region from [Formula: see text] to 900 GeV.


2013 ◽  
Vol 22 (09) ◽  
pp. 1350069 ◽  
Author(s):  
ZHIJIN JIANG ◽  
QINGGUANG LI ◽  
GUANXIANG JIANG

By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of produced charged particles in high energy heavy-ion collisions. The charged particles resulted from the freeze-out of the matter produced in collisions possess the Gaussian-like rapidity distributions. The leading particles are assumed having the rapidity distributions of the Gaussian form with the normalization constant being equal to the number of participants, which can be figured out in theory. It is found that the results from the revised Landau hydrodynamic model together with the contributions from leading particles are well consistent with the experimental data carried out by BNL-RHIC-PHOBOS Collaboration in different centrality Au + Au collisions at energies of [Formula: see text], 130 and 62.4 GeV , respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ya-Qin Gao ◽  
Tian Tian ◽  
Li-Na Gao ◽  
Fu-Hu Liu

Pseudorapidity distributions of charged particles produced in proton-proton (p-p) or proton-antiproton (p-p-) collisions over an energy range from 0.053 to 7 TeV are studied by using the four-component Landau hydrodynamic model. The results calculated by the model are in agreement with the experimental data of the UA5, PHOBOS, UA1, P238, CDF, ALICE, and CMS Collaborations which present orderly from low to high energies. According to the distribution widths of different components, the values and some features of square speed of sound parametercs2for “participant” and “spectator” quark components are obtained. It is shown that the speed of sound for “participant” quark components agrees approximately with that for “spectator” quark components in the error ranges. The present work is useful for studying nucleus-nucleus collisions in the related energy range.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Z. J. Jiang ◽  
H. L. Zhang ◽  
J. Wang ◽  
K. Ma

By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions atsNN=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions atsNN=2.76 TeV.


1999 ◽  
Vol 77 (4) ◽  
pp. 313-318 ◽  
Author(s):  
F -H Liu ◽  
Y A Panebratsev

The pseudorapidity distribution of relativistic singly charged particles produced in high-energy heavy-ion collisions is described by the thermalized cylinder picture. The calculated results are in agreement with the experimental data of lead-induced interactions at 158A GeV/c. PACS Nos.:25.75.-q and 25.75.Dw


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


Sign in / Sign up

Export Citation Format

Share Document