scholarly journals The Extended Symmetry Lie Algebra and the Asymptotic Expansion of the Transversal Correlation Function for the Isotropic Turbulence

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
V. N. Grebenev ◽  
A. N. Grishkov ◽  
M. Oberlack

The extended symmetry of the functional of length determined in an affine spaceK3of the correlation vectors for homogeneous isotropic turbulence is studied. The two-point velocity-correlation tensor field (parametrized by the time variablet) of the velocity fluctuations is used to equip this space by a family of the pseudo-Riemannian metricsdl2(t)(Grebenev and Oberlack (2011)). First, we observe the results obtained by Grebenev and Oberlack (2011) and Grebenev et al. (2012) about a geometry of the correlation spaceK3and expose the Lie algebra associated with the equivalence transformation of the above-mentioned functional for the quadratic formdlD22(t)generated bydl2(t)which is similar to the Lie algebra constructed by Grebenev et al. (2012). Then, using the properties of this Lie algebra, we show that there exists a nontrivial central extension wherein the central charge is defined by the same bilinear skew-symmetric formcas for the Witt algebra which measures the number of internal degrees of freedom of the system. For the applications in turbulence, as the main result, we establish the asymptotic expansion of the transversal correlation function for large correlation distances in the frame ofdlD22(t).

The present paper completes the theory of axisymmetric tensors and forms to the extent that is needed for the development of a theory of turbulence in which symmetry about a certain preferred direction is assumed to exist. Particular attention is given to the manner in which tensors, solenoidal in one or more indices, can be derived, uniquely, in a gauge-invariant way, as the curl of a suitably defined skew tensor. The explicit representation of the fundamental velocity correlation tensor ( ) in terms of two defining scalars is found; and the differential equations governing these scalars is also derived. In the theory of axisymmetric turbulence these latter equations replace the equation of von Karman & Howarth in the theory of isotropic turbulence.


In a previous paper the authors described direct measurements of all the terms in the equation for the rate of change of mean square vorticity in isotropic turbulence. The present paper is concerned with developments arising from the earlier work and with the experimental verification of some recent theoretical investigations. The results of measurements of the turbulent intensity u ' and of λ are presented; these establish that u' -2 and λ 2 are each proportional to the time of decay provided that the time is not too large. Within this initial period of the decay, the double and triple velocity correlation functions are found to maintain their form, i.e. to be self-preserving, for small values of the distance r between the two points at which the correlations are taken. For larger separations the double velocity correlation function changes its form slightly during decay and direct measurements of λ and of the integral scale L show that λ/ L increases during the decay. Theoretical predictions about the shape of the correlation function, for limited ranges of r , at high and at low Reynolds numbers are compared with measurements. Theory has shown that the above decay law cannot persist indefinitely, and the present experiments confirm that the decay law changes in the expected direction when the time is large. A division of the life-history of the turbulence into initial, transition and final periods is suggested; within the initial period, a classification based on the Reynblds number is also possible. Some speculations on the interpretation of the initial period are presented.


2020 ◽  
Vol 10 (24) ◽  
pp. 9095
Author(s):  
Santiago Lain ◽  
Martin Ernst ◽  
Martin Sommerfeld

This paper deals with the numerical analysis of the particle inertia and volume fraction effects on colliding particle-pair velocity correlation immersed in an unsteady isotropic homogeneous turbulent flow. Such correlation function is required to build reliable statistical models for inter-particle collisions, in the frame of the Euler–Lagrange approach, to be used in a broad range of two-phase flow applications. Computations of the turbulent flow have been carried out by means of Direct Numerical Simulation (DNS) by the Lattice Boltzmann Method (LBM). Moreover, the dependence of statistical properties of collisions on particle inertia and volumetric fraction is evaluated and quantified. It has been found that collision locations of particles of intermediate inertia, StK~1, occurs in regions where the fluid strain rate and dissipation are higher than the corresponding averaged values at particle positions. Connected with this fact, the average kinetic energy of colliding particles of intermediate inertia (i.e., Stokes number around 1) is lower than the value averaged over all particles. From the study of the particle-pair velocity correlation, it has been demonstrated that the colliding particle-pair velocity correlation function cannot be approximated by the Eulerian particle-pair correlation, obtained by theoretical approaches, as particle separation tends to zero, a fact related with the larger values of the relative radial velocity between colliding particles.


2013 ◽  
Vol 28 (03n04) ◽  
pp. 1340006 ◽  
Author(s):  
OSCAR CHACALTANA ◽  
JACQUES DISTLER ◽  
YUJI TACHIKAWA

We study the local properties of a class of codimension-2 defects of the 6d [Formula: see text] theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra [Formula: see text], where [Formula: see text] is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU (N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k.


Sign in / Sign up

Export Citation Format

Share Document