scholarly journals Multiobjective-Optimized Design of a New UWB Antenna for UWB Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
C. Moreno de Jong van Coevorden ◽  
M. Fernández Pantoja ◽  
Salvador G. García ◽  
A. Rubio Bretones ◽  
R. Gómez-Martín ◽  
...  

A multiobjective genetic algorithm has been applied to design a new printed, bow-tie antenna for ultrawideband applications, that is, ground penetrating radar, short range and high data rate communications, and so forth. The ultrawideband performance with respect to antenna impedance and gain is achieved by an optimized resistive loading profile and flare angle. A low-cost prototype is manufactured and numerical simulations are validated with measurements.

2014 ◽  
Vol 17 (1) ◽  
pp. 50-61
Author(s):  
Phuoc Tan Dong ◽  
Phu Huu Bui ◽  
Quang Minh Pham

A novel wideband VHF antenna for the impulse ground penetrating radar (GPR) system at 200 MHz central frequency is presented in this article. The antenna improves the impulse GPR system for increasing ability penetration. By using the Lemniscate curve, this novel structure of the proposed antenna achieve better radiation than other bow-tie antennas. In addition, this article also proposes the UWB balanced-to-balanced (balun) transformation line is designed to feed the antenna. The balun is an important element for improving the bandwidth of the antenna. The fabrication of the antenna is only simple but also low cost with FR4 substrate and copper patch. The proposed antenna is designed and fabricated with the successful results.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1045 ◽  
Author(s):  
Yuxuan Wu ◽  
Feng Shen ◽  
Yue Yuan ◽  
Dingjie Xu

Step Frequency Continuous Wave Ground Penetrating Radar (SFCW-GPR), as a tool for nondestructive testing of shallow soil surface targets, the realization of the function of SFCW-GPR is mainly based on the theory of refraction, reflection and scattering of electromagnetic wave in the discontinuity of dielectric constant. So, the UWB antenna system, an important part of SFCW-GPR, becomes more indispensable. In this paper, an improved modified universal antenna is designed, simulated and fabricated. Based on a typical Bow-tie antenna, it is modified by the methods of lumped loads, cavity-backed loading and structure loading. The simulated and measured results show that the UWB antenna has 1.36 GHz bandwidth from 0.64 to 2.0 GHz with three resonant wavelength peaks, and having been modified and improved, the UWB antenna performances including voltage standing-wave ratio (VSWR), input impedance, the boresight gain and current distribution, are much better than the typical Bow-tie antenna. In addition, the results of verification experiment of Step Frequency Continuous Wave (SFCW) show that the antenna can be applied to the working scenarios of SFCW-GPR.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1930
Author(s):  
Di Shi ◽  
Taimur Aftab ◽  
Gunnar Gidion ◽  
Fatma Sayed ◽  
Leonhard M. Reindl

An electrically small patch antenna with a low-cost high-permittivity ceramic substrate material for use in a ground-penetrating radar is proposed in this work. The antenna is based on a commercial ceramic 915 MHz patch antenna with a size of 25 × 25 × 4 mm3 and a weight of 12.9 g. The influences of the main geometric parameters on the antenna’s electromagnetic characteristics were comprehensively studied. Three bandwidth improvement techniques were sequentially applied to optimize the antenna: tuning the key geometric parameters, adding cuts on the edges, and adding parasitic radiators. The designed antenna operates at around 1.3 GHz and has more than 40 MHz continuous −3 dB bandwidth. In comparison to the original antenna, the −3 and −6 dB fractional bandwidth is improved by 1.8 times and 4 times, respectively. Two antennas of the proposed design together with a customized radar were installed on an unmanned aerial vehicle (UAV) for a quick search for survivors after earthquakes or gas explosions without exposing the rescue staff to the uncertain dangers of moving on the debris.


2018 ◽  
Vol 27 (4) ◽  
pp. 990-997 ◽  
Author(s):  
S. Kundu ◽  
A. Chatterjee ◽  
S. K. Jana ◽  
S. K. Parui

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 170 ◽  
Author(s):  
Xianyang Gao ◽  
Frank J. W. Podd ◽  
Wouter Van Verre ◽  
David J. Daniels ◽  
Anthony J. Peyton

Antennas are an important component in ground penetrating radar (GPR) systems. Although there has been much research reported on the design of individual antennas, there is less research reported on the design of the geometry of bi-static antennas. This paper considers the effects of key parameters in the setup of a GPR head consisting of a bi-static bow-tie pair to show the effect of these parameters on the GPR performance. The parameters investigated are the antenna separation, antenna height above the soil, and antenna input impedance. The investigation of the parameters was performed by simulation and measurements. It was found when the bi-static antennas were separated by 7 cm to 9 cm and were operated close to the soil (2 cm to 4 cm), the reflected signal from a near-surface object is relatively unaffected by height variation and object depth. An antenna input impedance of 250 Ω was chosen to feed the antennas to reduce the late-time ringing. Using these results, a new GPR system was designed and then evaluated at a test site near Benkovac, Croatia.


Sign in / Sign up

Export Citation Format

Share Document