scholarly journals Investigating the Performance of Bi-Static GPR Antennas for Near-Surface Object Detection

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 170 ◽  
Author(s):  
Xianyang Gao ◽  
Frank J. W. Podd ◽  
Wouter Van Verre ◽  
David J. Daniels ◽  
Anthony J. Peyton

Antennas are an important component in ground penetrating radar (GPR) systems. Although there has been much research reported on the design of individual antennas, there is less research reported on the design of the geometry of bi-static antennas. This paper considers the effects of key parameters in the setup of a GPR head consisting of a bi-static bow-tie pair to show the effect of these parameters on the GPR performance. The parameters investigated are the antenna separation, antenna height above the soil, and antenna input impedance. The investigation of the parameters was performed by simulation and measurements. It was found when the bi-static antennas were separated by 7 cm to 9 cm and were operated close to the soil (2 cm to 4 cm), the reflected signal from a near-surface object is relatively unaffected by height variation and object depth. An antenna input impedance of 250 Ω was chosen to feed the antennas to reduce the late-time ringing. Using these results, a new GPR system was designed and then evaluated at a test site near Benkovac, Croatia.

2021 ◽  
pp. 1-53
Author(s):  
Lei Fu ◽  
Lanbo Liu

Ground-penetrating radar (GPR) is a geophysical technique widely used in near-surface non-invasive detecting. It has the ability to obtaining a high-resolution internal structure of living trunks. Full wave inversion (FWI) has been widely used to reconstruct the dielectric constant and conductivity distribution for cross-well application. However, in some cases, the amplitude information is not reliable due to the antenna coupling, radiation pattern and other effects. We present a multiscale phase inversion (MPI) method, which largely matches the phase information by normalizing the magnitude spectrum; in addition, a natural multiscale approach by integrating the input data with different times is implemented to partly mitigate the local minimal problem. Two synthetic GPR datasets generated from a healthy oak tree trunk and from a decayed trunk are tested by MPI and FWI. Field GPR dataset consisting of 30 common shot GPR data are acquired on a standing white oak tree (Quercus alba); the MPI and FWI methods are used to reconstruct the dielectric constant distribution of the tree cross-section. Results indicate that MPI has more tolerance to the starting model, noise level and source wavelet. It can provide a more accurate image of the dielectric constant distribution compared to the conventional FWI.


Author(s):  
Kevin Gerlitz ◽  
Michael D. Knoll ◽  
Guy M. Cross ◽  
Robert D. Luzitano ◽  
Rosemary Knight

2015 ◽  
Vol 19 (3) ◽  
pp. 1125-1139 ◽  
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse ground-penetrating radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments that have been carried out at our artificial ASSESS test site and observed with surface-based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows the study of soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the feasibility of monitoring the dynamic shape of the capillary fringe reflection and (ii) the relative precision of monitoring soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.


Sign in / Sign up

Export Citation Format

Share Document