scholarly journals Some Approximation Properties of Modified Jain-Beta Operators

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Vishnu Narayan Mishra ◽  
Prashantkumar Patel

Generalization of Szász-Mirakyan operators has been considered by Jain, 1972. Using these generalized operators, we introduce new sequences of positive linear operators which are the integral modification of the Jain operators having weight functions of some Beta basis function. Approximation properties, the rate of convergence, weighted approximation theorem, and better approximation are investigated for these new operators. At the end, we generalize Jain-Beta operator with three parameters α, β, and γ and discuss Voronovskaja asymptotic formula.

2015 ◽  
Vol 48 (1) ◽  
Author(s):  
P. Patel ◽  
Vishnu Narayan Mishra

AbstractIn the present paper, we study approximation properties of a family of linear positive operators and establish direct results, asymptotic formula, rate of convergence, weighted approximation theorem, inverse theorem and better approximation for this family of linear positive operators.


2018 ◽  
Vol 11 (4) ◽  
pp. 958-975 ◽  
Author(s):  
Alok Kumar ◽  
Dipti Tapiawala ◽  
Lakshmi Narayan Mishra

In this note, we study approximation properties of a family of linear positive operators and establish asymptotic formula, rate of convergence, local approximation theorem, global approximation theorem, weighted approximation theorem, and better approximation for this family of linear positive operators.


2018 ◽  
Vol 34 (3) ◽  
pp. 363-370
Author(s):  
M. MURSALEEN ◽  
◽  
MOHD. AHASAN ◽  

In this paper, a Dunkl type generalization of Stancu type q-Szasz-Mirakjan-Kantorovich positive linear operators ´ of the exponential function is introduced. With the help of well-known Korovkin’s theorem, some approximation properties and also the rate of convergence for these operators in terms of the classical and second-order modulus of continuity, Peetre’s K-functional and Lipschitz functions are investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Afşin Kürşat Gazanfer ◽  
İbrahim Büyükyazıcı

We introduce positive linear operators which are combined with the Chlodowsky and Szász type operators and study some approximation properties of these operators in the space of continuous functions of two variables on a compact set. The convergence rate of these operators are obtained by means of the modulus of continuity. And we also obtain weighted approximation properties for these positive linear operators in a weighted space of functions of two variables and find the convergence rate for these operators by using the weighted modulus of continuity.


Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4353-4368 ◽  
Author(s):  
Minakshi Dhamija ◽  
Naokant Deo

In the present article, we introduce generalized positive linear-Kantorovich operators depending on P?lya-Eggenberger distribution (PED) as well as inverse P?lya-Eggenberger distribution (IPED) and for these operators, we study some approximation properties like local approximation theorem, weighted approximation and estimation of rate of convergence for absolutely continuous functions having derivatives of bounded variation.


2019 ◽  
Vol 69 (6) ◽  
pp. 1381-1394
Author(s):  
Wentao Cheng ◽  
Chunyan Gui ◽  
Yongmo Hu

Abstract In this paper, a kind of new analogue of Phillips operators based on (p, q)-integers is introduced. The moments of the operators are established. Then some local approximation for the above operators is discussed. Also, the rate of convergence and weighted approximation by these operators by means of modulus of continuity are studied. Furthermore, the Voronovskaja type asymptotic formula is investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Mei-Ying Ren ◽  
Xiao-Ming Zeng

We introduce summation-integral-typeq-Szász-Mirakjan operators and study approximation properties of these operators. We establish local approximation theorem. We give weighted approximation theorem. Also we estimate the rate of convergence of these operators for functions of polynomial growth on the interval[0,∞).


2007 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Mehmet Özarslan

The main object of this paper is to define the q -Laguerre type positive linear operators and investigate the approximation properties of these operators. The rate of convegence of these operators are studied by using the modulus of continuity, Peetre’s K -functional and Lipschitz class functional. The estimation to the difference | Mn +1, q ( ƒ ; χ )− Mn , q ( ƒ ; χ )| is also obtained for the Meyer-König and Zeller operators based on the q -integers [2]. Finally, the r -th order generalization of the q -Laguerre type operators are defined and their approximation properties and the rate of convergence of this r -th order generalization are also examined.


2017 ◽  
Vol 50 (1) ◽  
pp. 144-155
Author(s):  
Angamuthu Sathish Kumar ◽  
Zoltán Finta ◽  
Purshottam Narain Agrawal

Abstract In this paper, we study some local approximation properties of generalized Baskakov-Durrmeyer-Stancu operators. First, we establish a recurrence relation for the central moments of these operators, then we obtain a local direct result in terms of the second order modulus of smoothness. Further, we study the rate of convergence in Lipschitz type space and the weighted approximation properties in terms of the modulus of continuity, respectively. Finally, we investigate the statistical approximation property of the new operators with the aid of a Korovkin type statistical approximation theorem.


Filomat ◽  
2019 ◽  
Vol 33 (17) ◽  
pp. 5477-5488
Author(s):  
Prashantkumar Patel

In the present article, we propose the new class positive linear operators, which discrete type depending on a real parameters. These operators are similar to Jain operators but its approximation properties are different then Jain operators. Theorems of degree of approximation, direct results, Voronovskaya Asymptotic formula and statistical convergence are discussed.


Sign in / Sign up

Export Citation Format

Share Document