scholarly journals Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alexander Burinskii

The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface) in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the criticalN=2superstring.

2019 ◽  
Vol 34 (33) ◽  
pp. 1930016
Author(s):  
Kazuho Hiraga ◽  
Yoshifumi Hyakutake

In this paper, we review inflationary cosmology in M-theory with quantum corrections. In old days the inflation was proposed as a resolution to the cosmological problems, and nowadays models of the inflation are severely restricted by the observations. Among them, the predictions of the Starobinsky model, which contains scalar curvature squared term, is consistent with the observations. The higher curvature terms will come from quantum effect of the gravity, and it is natural to ask its origin in superstring theory or M-theory. We investigate inflationary solution in the M-theory with higher curvature terms. We show that higher curvature terms induce an exponentially expanding solution in the early universe, and the inflation naturally ends when the corrections are suppressed. We also discuss that the ambiguity of the higher curvature terms do not affect the inflationary scenario in the M-theory.


1988 ◽  
Vol 03 (18) ◽  
pp. 1775-1784 ◽  
Author(s):  
S. BELLUCCI

Using a Weyl transformation in superspace, we provide a noncanonical formulation of standard D=10, N=1 supergravity, including the gauge matter sector. This formulation turns out to be ideally suited for carrying out the renormalization of the Green-Schwarz σ-model describing the D=10 heterotic string propagating in a curved background space. By reducing the superspace results to the component level, we derive the supersymmetry transformation laws for the component fields of the theory.


2009 ◽  
Vol 2009 (10) ◽  
pp. 011-011 ◽  
Author(s):  
Michael Ambroso ◽  
Burt A Ovrut
Keyword(s):  

Author(s):  
MEI-CHU CHANG ◽  
HOIL KIM

Recently Calabi–Yau threefolds have been studied intensively by physicists and mathematicians. They are used as physical models of superstring theory [Y] and they are one of the building blocks in the classification of complex threefolds [KMM]. These are three dimensional analogues of K3 surfaces. However, there is a fundamental difference as is to be expected. For K3 surfaces, the moduli space N of K3 surfaces is irreducible of dimension 20, inside which a countable number of families Ng with g [ges ] 2 of algebraic K3 surfaces of dimension 19 lie as a dense subset. More explicitly, an element in Ng is (S, H), where S is a K3 surface and H is a primitive ample divisor on S with H2 = 2g − 2. For a generic (S, H), Pic (S) is generated by H, so that the rank of the Picard group of S is 1. A generic surface S in N is not algebraic and it has Pic (S) = 0, but dim N = h1(S, TS) = 20 [BPV]. It is quite an interesting problem whether or not the moduli space M of all Calabi–Yau threefolds is irreducible in some sense [R]. A Calabi–Yau threefold is algebraic if and only if it is Kaehler, while every non-algebraic K3 surface is still Kaehler. Inspired by the K3 case, we define Mh,d to be {(X, H)[mid ]H3 = h, c2(X) · H = d}, where H is a primitive ample divisor on a smooth Calabi–Yau threefold X. There are two parameters h, d for algebraic Calabi–Yau threefolds, while there is only one parameter g for algebraic K3 surfaces. (Note that c2(S) = 24 for every K3 surface.) We know that Ng is of dimension 19 for every g and is irreducible but we do not know the dimension of Mh,d and whether or not Mh,d is irreducible. In fact, the dimension of Mh,d = h1(X, TX), where (X, H) ∈ Mh,d. Furthermore, it is well known that χ(X) = 2 (rank of Pic (X) − h1(X, TX)), where χ(X) is the topological Euler characteristic of X. Calabi–Yau threefolds with Picard rank one are primitive [G] and play an important role in the moduli spaces of all Calabi–Yau threefolds. In this paper we give a bound on c3 of Calabi–Yau threefolds with Picard rank 1.


1997 ◽  
Vol 12 (35) ◽  
pp. 2647-2653 ◽  
Author(s):  
Tianjun Li ◽  
D. V. Nanopoulos ◽  
Jorge L. Lopez

We propose a supergravity model that contains elements recently shown to arise in the strongly-coupled limit of the E8 × E8 heterotic string (M-theory), including a no-scale-like Kähler potential, the identification of the string scale with the gauge coupling unification scale, and the onset of supersymmetry breaking at an intermediate scale determined by the size of the 11th dimension of M-theory. We also study the phenomenological consequences of such scenario, which include a rather constrained sparticle spectrum within the reach of present-generation particle accelerators.


2016 ◽  
Vol 13 (06) ◽  
pp. 1650075 ◽  
Author(s):  
Adil Belhaj ◽  
Zakariae Benslimane ◽  
Moulay Brahim Sedra ◽  
Antonio Segui

Using M-theory compactification, we develop a three-factor separation for the scalar submanifold of [Formula: see text] seven-dimensional supergravity associated with 2-cycles of the K3 surface. Concretely, we give an interplay between the three-scalar submanifold factors and the extremal black holes obtained from M2-branes wrapping such 2-cycles. Then, we show that the corresponding black hole charges are linked to one, two and four qubit systems.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Bernardo Fraiman ◽  
Héctor Parra De Freitas

Abstract We use a moduli space exploration algorithm to produce a complete list of maximally enhanced gauge groups that are realized in the heterotic string in 7d, encompassing the usual Narain component, and five other components with rank reduction realized via nontrivial holonomy triples. Using lattice embedding techniques we find an explicit match with the mechanism of singularity freezing in M-theory on K3. The complete global data for each gauge group is explicitly given.


Sign in / Sign up

Export Citation Format

Share Document