scholarly journals Phototrophic Growth and Accumulation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Purple Nonsulfur Bacterium Rhodopseudomonas palustris SP5212

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. Mukhopadhyay ◽  
A. Patra ◽  
A. K. Paul

The ability of the phototrophic bacterium Rhodopseudomonas palustris SP5212 to produce polyhydroxyalkanoates (PHAs), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in particular was, assessed in acetate medium supplemented with hydroxybutyrate and valerate as cosubstrates. The isolate accumulated the polymer accounting for some 49.06% and 30% of cell dry weight when grown in hydroxybutyrate and valerate, respectively. PHA accumulation as well as 3HV monomer incorporation (30 mol%) was maximum at 0.1% hydroxybutyrate, while valerate at 0.1% and 0.3% was suitable for total polymer accumulation and 3HV monomer incorporation, respectively. Cosupplementation of hydroxybutyrate and valerate in the ratio of 3 : 1 led to the accumulation of PHA accounting for 54% of cell dry weight, which contained more than 50 mol% of 3HV monomer. Moreover, the biphasic cultivation conditions with hydroxybutyrate as cosubstrate have improved the quality as well as quantity of the accumulated copolymer significantly.

1983 ◽  
Vol 38 (11-12) ◽  
pp. 933-938 ◽  
Author(s):  
Michaela Preuß ◽  
Jobst-Heinrich Klemme

A dissimilatory nitrite reductase from the facultatively phototrophic bacterium , Rhodopseudomonas palustris strain 1a1 was studied. A basic level of the enzyme (10 -50 mU/mg protein) was measured in dark, aerated and anaerobic, photosynthetic cultures. A marked derepression of enzyme synthesis occurred under conditions of oxygen limitation (200-300 mU/mg protein). The addition of nitrite (or nitrate) to the culture medium had only a slight effect on the maximal nitrite reductase titer of cells. The enzyme was purified from photosynthetically grown cells by precipitation with ammonium sulfate, gel filtration through Sepharose 6B and repeated chromatography on DE 52-cellulose. As estimated by gel filtration, the nitrite reductase had a molecular weight of about 120 000 ± 12 000 and yielded only one band (mol. wt. of about 68 000 ± 7000) in SDS-gel electrophoresis. The isoelectric point of the enzyme was at pH 5.1. Nitric oxide (NO) was identified as the reaction product of nitrite reduction. The enzyme also exhibited cytochrome c-oxidase activity and was active with chemically reduced viologen dyes, FMN and cytochrome c as electron donors. Highly purified nitrite reductase preparations contained 10 mol% of a c-type cytochrome. Trace metal analyses indicated the presence of Cu in the enzyme. Consistent with the detection of Cu was the finding that the Cu-chelator, diethyldithiocarbamate, strongly inhibited the nitrite reductase


2003 ◽  
Vol 69 (9) ◽  
pp. 5186-5191 ◽  
Author(s):  
Yasuhiro Oda ◽  
Bastiaan Star ◽  
Louis A. Huisman ◽  
Jan C. Gottschal ◽  
Larry J. Forney

ABSTRACT The biogeography of the purple nonsulfur bacterium Rhodopseudomonas palustris on a local scale was investigated. Thirty clones of phototrophic bacteria were isolated from each of five unevenly spaced sampling locations in freshwater marsh sediments along a linear 10-m transect, and a total of 150 clones were characterized by BOX-PCR genomic DNA fingerprinting. Cluster analysis of 150 genomic fingerprints yielded 26 distinct genotypes, and 106 clones constituted four major genotypes that were repeatedly isolated. Representatives of these four major genotypes were tentatively identified as R. palustris based on phylogentic analyses of 16S rRNA gene sequences. The differences in the genomic fingerprint patterns among the four major genotypes were accompanied by differences in phenotypic characteristics. These phenotypic differences included differences in the kinetics of carbon source use, suggesting that there may be functional differences with possible ecological significance among these clonal linages. Morisita-Horn similarity coefficients (C MH), which were used to compare the numbers of common genotypes found at pairs of sampling locations, showed that there was substantial similarity between locations that were 1 cm apart (C MH, ≥0.95) but there was almost no similarity between locations that were ≥9 m apart (C MH, ≤0.25). These calculations showed there was a gradual decrease in similarity among the five locations as a function of distance and that clones of R. palustris were lognormally distributed along the linear 10-m transect. These data indicate that natural populations of R. palustris are assemblages of genetically distinct ecotypes and that the distribution of each ecotype is patchy.


2017 ◽  
Vol 26 (6) ◽  
pp. 2767-2775
Author(s):  
Yingying Tian ◽  
Xingqiang Wu ◽  
Bing Feng ◽  
Cuicui Tian ◽  
Chunbo Wang ◽  
...  

1990 ◽  
Vol 136 (12) ◽  
pp. 2551-2553 ◽  
Author(s):  
G. Kleemann ◽  
K. Poralla ◽  
G. Englert ◽  
H. Kjosen ◽  
S. Liaaen-Jensen ◽  
...  

2021 ◽  
Vol 10 (15) ◽  
Author(s):  
Irshad UI Haq ◽  
Kathryn R. Fixen

ABSTRACT The purple nonsulfur bacterium Rhodopseudomonas palustris RCB100 anaerobically degrades 3-chlorobenzoate (3-CBA), a halogenated pollutant. R. palustris RCB100 uses 3-CBA as a carbon source, while most R. palustris strains cannot. We report the complete genome sequence of strain RCB100 to help gain insight into how this bacterium degrades 3-CBA.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 116-120 ◽  
Author(s):  
Emiliya Pisareva ◽  
Valentin Savov ◽  
Anna Kujumdzieva

Citrinin is a mycotoxin, which is produced by fungi belonging to the genus Monascus, known in biotechnology as producers of azaphilone pigments. The relation between biosynthesis of these secondary metabolites was investigated in different species of the genus Monascus in batch-culture at the following cultivation conditions: T = 28 °C, agitation 220 rpm, and a medium, which induce citrinin production, containing ethanol as a carbon source. The screening was carried out with 16 fungal strains and the biosynthesis of citrinin and pigments was monitored quantitatively at the standard conditions mentioned above. Some kinetic parameters of the process have been determined. The values of the growth yield coefficient YX/C were between 0.32 and 0.57. The amount of the extracellular red and orange pigments at the end of cultivation varied for the different strains between 0.09 and 1.33 OU/ mg dry weight, and 0.15 and 0.96 OU/mg dry weight, respectively. The amount of the total pigments measured was between 0.16 and 3.6 OU/mg dry weight, and between 0.21 and 3.39 OU/mg dry weight. The determined ratio 500 nm/400 nm, characterizing the pigment production, ranged between 0.60 and 1.06. Twelve of the investigated strains produced citrinin and pigments, two of them produced only pigments. Two strains were not able to produce neither pigments nor citrinin. Thus, the biosynthesis of citrinin appeared to be strain-specific and does not correlate with the pigments’ biosynthesis by the fungal strains belonging to the genus Monascus.


2020 ◽  
Vol 86 (11) ◽  
Author(s):  
Zhaobao Wang ◽  
Qifeng Wen ◽  
Caroline S. Harwood ◽  
Bo Liang ◽  
Jianming Yang

ABSTRACT The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of R. palustris with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of R. palustris, which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by rpa2047 to rpa2049 and rpa2541 to rpa2543 were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that R. palustris uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure. IMPORTANCE There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium Rhodopseudomonas palustris grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. R. palustris cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that R. palustris is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.


Sign in / Sign up

Export Citation Format

Share Document