scholarly journals Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yazan Taamneh ◽  
Reyad Omari

This study aims to numerically examine the fluid flow and heat transfer in a porous microchannel saturated with power-law fluid. The governing momentum and energy equations are solved by using the finite difference technique. The present study focuses on the slip flow regime, and the flow in porous media is modeled using the modified Darcy-Brinkman-Forchheimer model for power-law fluids. Parametric studies are conducted to examine the effects of Knudsen number, Darcy number, power law index, and inertia parameter. Results are given in terms of skin friction and Nusselt number. It is found that when the Knudsen number and the power law index decrease, the skin friction on the walls decreases. This effect is reduced slowly while the Darcy number decreases until it reaches the Darcy regime. Consequently, with a very low permeability the effect of power law index vanishes. The numerical results indicated also that when the power law index decreases the fully-developed Nusselt number increases considerably especially, in the limit of high permeability, that is, nonDarcy regime. As far as Darcy regime is concerned the effects of the Knudsen number and the power law index of the fully-developed Nusselt number is very little.

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Mohammad Sefid ◽  
Ehsan Izadpanah

Developing and fully developed laminar flows of power law fluid with forced convection heat transfer through a concentric annular duct are numerically analyzed. The results are presented for the following ranges: 0.2 ≤ n ≤ 1.8 (power law index), 10 ≤ Re ≤ 1000 (Reynolds number), and r* = 0.2, 0.5, 0.8 (aspect ratio). In addition, the influences of different thermal boundary conditions on the thermal performance are delineated. The effects of rheological parameter on the developing length, friction factor, temperature distribution, velocity profile, and Nusselt number along the channel length are investigated. The results are compared with earlier research and excellent agreement was observed.


2016 ◽  
Vol 9 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Jacob Hirschhorn ◽  
Marisa Madsen ◽  
Antonio Mastroberardino ◽  
Javed Siddique ◽  
◽  
...  

2012 ◽  
Vol 171-172 ◽  
pp. 67-82 ◽  
Author(s):  
Amir Nejat ◽  
Ehsan Mirzakhalili ◽  
Abbas Aliakbari ◽  
Mohammad S. Fallah Niasar ◽  
Koohyar Vahidkhah

2021 ◽  
Author(s):  
Hasib Ahmed Prince ◽  
Didarul Ahasan Redwan ◽  
Enamul Hasan Rozin ◽  
Sudipta Saha ◽  
Mohammad Arif Hasan Mamun

Abstract In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered dependent on the rotation orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counter-clockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW-CCW and CCW-CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for better understandings of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies non-linearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights onto the sets of key parametric configuration that have dominant influence on the thermal performance of lid driven cavity with double rotating cylinders.


Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to investigate the steady flow and heat transfer of a Cu-Al2O3/water hybrid nanofluid over a nonlinear permeable stretching/shrinking surface with radiation effects. The surface velocity condition is assumed to be of the power-law form with an exponent of 1/3. The governing equations of the problem are converted into a system of similarity equations by using a similarity transformation.Design/methodology/approachThe problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The results of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented through graphs and tables for several values of the parameters. The effects of these parameters on the flow and heat transfer characteristics are examined and discussed.FindingsResults found that dual solutions exist for a certain range of the stretching/shrinking and suction parameters. The increment of the skin friction coefficient and reduction of the local Nusselt number on the shrinking sheet is observed with the increasing of copper (Cu) nanoparticle volume fractions for the upper branch. The skin friction coefficient and the local Nusselt number increase when suction parameter is increased for the upper branch. Meanwhile, the temperature increases in the presence of the radiation parameter for both branches.Originality/valueThe problem of Cu-Al2O3/water hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface with radiation effects is the important originality of the present study where the dual solutions for the flow reversals are obtained.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Latif M. Jiji

This paper examines the effects of rarefaction, dissipation, curvature, and accommodation coefficients on flow and heat transfer characteristics in rotating microdevices. The problem is modeled as a cylindrical Couette flow with a rotating shaft and stationary housing. The housing is maintained at uniform temperature while the rotating shaft is insulated. Thus, heat transfer is due to viscous dissipation only. An analytic solution is obtained for the temperature distribution in the gas filled concentric clearance between the rotating shaft and its stationary housing. The solution is valid in the slip flow and temperature jump domain defined by the Knudsen number range of 0.001<Kn<0.1. The important effect of the momentum accommodation coefficient on velocity reversal and its impact on heat transfer is determined. The Nusselt number was found to depend on four parameters: the momentum accommodation coefficient of the stationary surface σuo, Knudsen number Kn, ratio of housing to shaft radius ro∕ri, and the dimensionless group [γ∕(γ+1)](2σto−1)∕(σtoPr). Results indicate that curvature, Knudsen number, and the accommodation coefficients have significant effects on temperature distribution, heat transfer, and Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document