scholarly journals Nonsingular Einsteinian Cosmology: How Galactic Momentum Prevents Cosmic Singularities

2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Kenneth J. Epstein

It is shown how Einstein's equation can account for the evolution of the universe without an initial singularity and can explain the inflation epoch as a momentum dominated era in which energy from matter and radiation drove extremely accelerated expansion of space. It is shown how an object with momentum loses energy to the expanding universe and how this energy can contribute to accelerated spatial expansion more effectively than vacuum energy, because virtual particles, the source of vacuum energy, can have negative energy, which can cancel any positive energy from the vacuum. Radiation and matter with momentum have positive but decreasing energy in the expanding universe, and the energy lost by them can contribute to accelerated spatial expansion between galactic clusters, making dark energy a classical effect that can be explained by general relativity without quantum mechanics, and, as (13) and (15) show, without an initial singularity or a big bang. This role of momentum, which was overlooked in the Standard Cosmological Model, is the basis of a simpler model which agrees with what is correct in the old model and corrects what is wrong with it.

2015 ◽  
Vol 93 (1) ◽  
pp. 14-17
Author(s):  
Raj Bali ◽  
Seema Saraf

A cosmological model that admits barotropic fluid distribution and a negative energy massless scalar creation field as a source in the presence of bulk viscosity and vacuum energy (Λ) in Friedmann–Robertson–Walker space–time is investigated. It has been shown that the model satisfies observational tests and is thus an alternative to the standard Big Bang model. The model is free from real singularity and particle horizon. The creation field increases with time, which matches Hoyle and Narlikar (Proc. Roy. Soc. A, 282, 178 (1964). doi:10.1098/rspa.1964.0225 ). To get the deterministic results, we have assumed that the coefficient of bulk viscosity, ζαρ1/2, where ρ is the matter density, ρ = 3H2, Λ ∼ H2, where H is the Hubble parameter. The model satisfies the energy conditions (weak, dominant, and strong). The deceleration parameter, q < 0, shows that the model represents an accelerating phase of the universe.


Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Farhad Rachidi

According to the current understanding, the recently observed&nbsp;&nbsp; accelerated expansion of the universe is caused by the dark or the vacuum energy. Attempts to calculate the magnitude of this energy using the standard model of particle physics led to values which are 59 &ndash; 120 orders of magnitude larger than the experimentally estimated one. Even though the expanding space has positive internal energy, in a flat universe it is completely balanced by the negative energy of gravitational field making the net energy equal to zero. However, the current physical theories may breakdown for times less than or on the order of Planck time and one cannot assume that the above assertion concerning the balance of two energies is valid also in this time scale. In this note it is assumed that this balance of the two energies during the creation of new space as the universe expands takes place only for times larger than the Planck time. If this assumption is correct, the net energy of the newly created space remains positive for times on the order of Planck time and the positive vacuum energy has to be burrowed from empty space before it is being balanced by gravity. This can happen only within the restrictions of the time-energy uncertainty principle. In this note it is shown that such considerations lead to a vacuum energy density of about 0.3 Nanojoules per cubic meter which has to be compared with the measured value of 0.6 Nanojoules per cubic meter.


2011 ◽  
Vol 141 ◽  
pp. 408-412 ◽  
Author(s):  
Yao Bao Yin ◽  
Ling Li

The mechanism of gas cooled or heated through a pneumatic throttle orifice is analyzed. Supposing the total energy of the gas is constant, if the force between the molecules does positive energy, it makes gas heated; if it does negative energy, it makes gas cooled. The conversion temperature of gas is an evaluation parameter for repulsive or attractive force. It has utilized Joule-Thomson coefficient and real gas equation of state to obtain the characteristics of conversion temperature, and the relationships between the molecules distance and the phenomenon of gas cooled or heated after throttle at normal temperature by the conversion characteristics are achieved. The experimental results agreed well with the theoretical results.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550052 ◽  
Author(s):  
Masakatsu Kenmoku ◽  
Y. M. Cho

The superradiance phenomena of massive bosons and fermions in the Kerr space–time are studied in the Bargmann–Wigner formulation. In case of bi-spinor, the four independent components spinors correspond to the four bosonic freedom: one scalar and three vectors uniquely. The consistent description of the Bargmann–Wigner equations between fermions and bosons shows that the superradiance of the type with positive energy (0 < ω) and negative momentum near horizon (p H < 0) is shown not to occur. On the other hand, the superradiance of the type with negative energy (ω < 0) and positive momentum near horizon (0 < p H ) is still possible for both scalar bosons and spinor fermions.


1999 ◽  
Vol 14 (09) ◽  
pp. 1429-1484 ◽  
Author(s):  
FRANCESCO BIGAZZI ◽  
LUCA LUSANNA

A new spinning particle with a definite sign of the energy is defined on spacelike hypersurfaces after a critical discussion of the standard spinning particles. It is the pseudoclassical basis of the positive energy [Formula: see text] [or negative energy [Formula: see text]] part of the [Formula: see text] solutions of the Dirac equation. The study of the isolated system of N such spinning charged particles plus the electromagnetic field leads to their description in the rest frame Wigner-covariant instant form of dynamics on the Wigner hyperplanes orthogonal to the total four-momentum of the isolated system (when it is timelike). We find that on such hyperplanes these spinning particles have a nonminimal coupling only of the type "spin–magnetic field," like the nonrelativistic Pauli particles to which they tend in the nonrelativistic limit. The Lienard–Wiechert potentials associated with these charged spinning particles are found. Then, a comment is made on how to quantize the spinning particles respecting their fibered structure describing the spin structure.


Sign in / Sign up

Export Citation Format

Share Document