spinning particles
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Geoffrey Compère ◽  
Adrien Druart

We revisit the conserved quantities of the Mathisson-Papapetrou-Tulczyjew equations describing the motion of spinning particles on a fixed background. Assuming Ricci-flatness and the existence of a Killing-Yano tensor, we demonstrate that besides the two non-trivial quasi-conserved quantities, i.e. conserved at linear order in the spin, found by Rüdiger, non-trivial quasi-conserved quantities are in one-to-one correspondence with non-trivial mixed-symmetry Killing tensors. We prove that no such stationary and axisymmetric mixed-symmetry Killing tensor exists on the Kerr geometry. We discuss the implications for the motion of spinning particles on Kerr spacetime where the quasi-constants of motion are shown not to be in complete involution.


2022 ◽  
pp. 115664
Author(s):  
Krzysztof Andrzejewski ◽  
Cezary Gonera ◽  
Joanna Gonera ◽  
Piotr Kosiński ◽  
Paweł Maślanka

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Leonardo de la Cruz ◽  
Andres Luna ◽  
Trevor Scheopner

Abstract We obtain a conservative Hamiltonian describing the interactions of two charged bodies in Yang-Mills through $$ \mathcal{O}\left({\alpha}^2\right) $$ O α 2 and to all orders in velocity. Our calculation extends a recently-introduced framework based on scattering amplitudes and effective field theory (EFT) to consider color-charged objects. These results are checked against the direct integration of the observables in the Kosower-Maybee-O’Connell (KMOC) formalism. At the order we consider we find that the linear and color impulses in a scattering event can be concisely described in terms of the eikonal phase, thus extending the domain of applicability of a formula originally proposed in the context of spinning particles.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Brett McInnes

Abstract The Weak Gravity Conjecture arises from the assertion that all extremal black holes, even those which are “classical” in the sense of being very massive, must decay by quantum-mechanical emission of particles or smaller black holes. This is interesting, because some observed astrophysical black holes are on the brink of being extremal — though this is due to rapid rotation rather than a large electric or magnetic charge. The possibility that rotating near-extremal black holes might, in addition to radiating spinning particles, also bifurcate by emitting smaller black holes, has attracted much attention of late. There is, however, a basic question to be answered here: can such a bifurcation be compatible with the second law of thermodynamics? This is by no means clear. Here we show that, if there is indeed such a mechanism for bifurcations of AdS4-Kerr-Newman black holes, then this process can in fact satisfy the second law.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Bo-Ting Chen ◽  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Man Kuan Tam

Abstract Recent studies have shown that minimal couplings for massive spinning particles, which in the classical limit reproduce the leading PM Kerr black hole dynamics, leads to an eikonal S-matrix exhibiting spin-entanglement suppression. In this paper we trace this phenomenon to the suppression of spin-flipping components in the S-matrix, known to be the hallmark of minimal coupling in the ultra-relativistic limit. We further generalize the consideration to charged and $$ \mathcal{N} $$ N = 4 blackholes, demonstrating that in both cases maximal suppression occurs at the extremal limit.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Daniel Baumann ◽  
Carlos Duaso Pueyo ◽  
Austin Joyce ◽  
Hayden Lee ◽  
Guilherme L. Pimentel

We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang--Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Ali Vahedi ◽  
Jafar Khodagholizadeh ◽  
Arman Tursunov

AbstractA non-monotonic behavior of the velocity gradient of a test particle revolving around a rapidly rotating black hole in the locally non-rotating frame of reference is known as the Aschenbach effect. This effect can serve as a distinguishing signature of rapidly rotating black holes, being potentially useful for the measurements of the astrophysical black hole spins. This paper is the generalization of our previous research to the motion of spinning particles around a rotating black hole with non-zero cosmological constant. We show that both the particle’s spin s and the cosmological constant $$\Lambda $$ Λ modify the critical value of the black hole spin $$a_c$$ a c , for which the Aschenbach effect can be observed; $$a_c$$ a c can increase or decrease depending on the signs of s and $$\Lambda $$ Λ . We also found that the particle’s spin s can mimic the effect of the cosmological constant $$\Lambda $$ Λ for a given $$a_c$$ a c , causing thus a discrepancy in the measurements of s, $$\Lambda $$ Λ and $$a_c$$ a c in the Aschenbach effect.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Anton Galajinsky

AbstractMotivated by recent studies of superconformal mechanics extended by spin degrees of freedom, we construct minimally superintegrable models of generalized spinning particles on $${\mathcal {S}}^2$$ S 2 , the internal degrees of freedom of which are represented by a 3-vector obeying the structure relations of a three-dimensional real Lie algebra. Extensions involving an external field of the Dirac monopole, or the motion on the group manifold of SU(2), or a scalar potential giving rise to two quadratic constants of the motion are discussed. A procedure how to build similar models, which rely upon real Lie algebras with dimensions $$d=4,5,6$$ d = 4 , 5 , 6 , is elucidated.


2021 ◽  
Vol 133 (5) ◽  
pp. 50001
Author(s):  
F. E. A. Souza ◽  
G. Alencar ◽  
L. F. F. Freitas ◽  
R. R. Landim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document