scholarly journals Synthesis of Octahedral-Shaped NiO and Approaches to an Anode Material of Manufactured Solid Oxide Fuel Cells Using the Decalcomania Method

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Haeran Cho ◽  
Huryul Lee ◽  
Sun-Min Park ◽  
Byung-Hyun Choi ◽  
Misook Kang

Micrometer-sized and octahedral-shaped NiO particles were synthesized by microwave thermal treatment at 300 watt power for 15 min in a microwave chamber to be used as an anode material in solid oxide fuel cells. SEM image and particle size distribution revealed near-perfect octahedral NiO microparticle with sizes ranging from 4.0~11.0 μm. The anode functional layer (AFL, 60 wt% NiO synthesized: commercial 40 wt% YSZ), electrolyte (commercial Yttria-stabilized zirconia, YSZ), and cathode (commercial La0.8Sr0.2MnO3, LSM) layers were manufactured using the decalcomania method on a porous anode support, sequentially. The sintered electrolyte at 1450°C for 2 h using the decalcomania method was dense and had a thickness of about 10 μm. The cathode was sintered at 1250°C for 2 h, and it was porous. Using humidified hydrogen as a fuel, a coin cell with a 15 μm thick anode functional layer exhibited maximum power densities of 0.28, 0.38, and 0.65 W/cm2at 700, 750, and 800°C, respectively. Otherwise, when a commercial YSZ anode functional layer was used, the maximum power density was 0.55 W/cm2at 800°C.

Author(s):  
Hyeon-Cheol Park ◽  
Fatih Dogan

Anode supported solid oxide fuel cells (SOFC) were fabricated by addition of various metal oxides such as Fe2O3, Co3O4 and TiO2 to thin anode functional layers between the electrolyte (yttria-stabilized zirconia, YSZ) and electrode materials (anode support: YSZ-NiO). Effect of the additives on the power density and impedance spectra of SOFC was studied. It was found that addition of Co3O4 to anode functional layer was most effective towards improvement of power densities and reduction of the total ohmic resistance as well as the area specific resistance of the cells, while addition of TiO2 to anode functional layer resulted in lower power densities. Possible mechanisms on the relationship between the additives in electrode functional layers and the cell performance were briefly discussed.


Author(s):  
Benjamin Emley ◽  
Dhruba Panthi ◽  
Yanhai Du ◽  
Yan Yao

Abstract Precise porosity control is highly desirable for improving the electrochemical performance of solid oxide fuel cells (SOFCs). Freeze casting is an established method for enabling high bulk porosity in structures and controlling pore orientation. In this study, freeze casting was used to fabricate tubular, anode-supported SOFCs with aligned and varying amounts of porosity by controlling the solids/water ratio in different casting slurries. SOFCs were prepared with a Ni/yttria and scandia stabilized zirconia (ScYSZ) anode support (AS), an anode functional layer (AFL), a ScYSZ electrolyte, a lanthanum strontium manganite (LSM)/ScYSZ cathode interlayer (CIL), and an LSM cathode. The permeability of the anode support was found to increase from 1.4 × 10−2 to 1.8 × 10−2 m2 as porosity was increased from 57 to 64 vol%, while the total cell resistance decreased by 35% from 0.93 to 0.60 Ohm cm2. When evaluated with 30 vol% H2 as the fuel at 800 °C, the decrease of concentration polarization enabled an increase in electrochemical performance by 42% from 0.35 to 0.50 W/cm2 as the porosity in the anode support was increased. Mechanical strength characterization using a three-point method showed there is a practical upper limit of the amount of porosity that can be designed into the anode support. This work paves a way for controlling porosity by freeze casting and understanding the correlation between porosity and concentration polarization losses in SOFCs.


Author(s):  
Y. Sakitou ◽  
A. Hirano ◽  
N. Imanishi ◽  
Y. Takeda ◽  
Y. Liu ◽  
...  

The composite electrode of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Ag was examined as an air electrode for intermediate-temperature solid oxide fuel cells. Two types of LSCF/Ag composite electrodes were prepared. One was made by firing the printed sheet of LSCF-GDC (10mol%Gd2O3 doped CeO2)-Ag powder mixture on the GDC/8mol%Y2O3 doped zirconia (YSZ) electrolyte, and the other was prepared by firing the LSCF electrode on GDC/YSZ infiltrating a AgNO3 solution in the pores of the electrode. In both cases, the cathode polarization overpotentials were reduced by the addition of Ag into LSFC. The power density of anode support cells with the LSCF electrode was increased from 0.28W∕cm2to0.34W∕cm2 at 600°C by infiltrating a AgNO3 solution into the electrode.


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

2021 ◽  
Author(s):  
Ana Laura Larralde ◽  
Loreto Troncoso ◽  
M. Consuelo Alvarez-Galvan ◽  
Vanessa Cascos ◽  
Maria Teresa Fernandez-Diaz ◽  
...  

An A-site deficient perovskite with metallic Ni in exsolution, Ni-Sr0.9Mo0.9O3-δ, has been prepared, characterized and tested as an anode material in intermediate-temperature solid-oxide fuel cells (IT-SOFCs). It was obtained by...


Author(s):  
Hong Yi Kenneth Tan ◽  
Jong Dae Baek ◽  
Chen-Nan Sun ◽  
Jun Wei ◽  
Seong Hyuk Lee ◽  
...  

2014 ◽  
Vol 39 (24) ◽  
pp. 12894-12903 ◽  
Author(s):  
Seung-Young Park ◽  
Jee Hyun Ahn ◽  
Chang-Woo Jeong ◽  
Chan Woong Na ◽  
Rak-Hyun Song ◽  
...  

2018 ◽  
Vol 63 (10) ◽  
pp. 1291-1296 ◽  
Author(s):  
S. Ya. Istomin ◽  
A. I. Kotova ◽  
N. V. Lyskov ◽  
G. N. Mazo ◽  
E. V. Antipov

Sign in / Sign up

Export Citation Format

Share Document