scholarly journals Decomposed Sliding Mode Control of the Drive with Interior Permanent Magnet Synchronous Motor and Flexible Coupling

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Jan Vittek ◽  
Sergey Ryvkin

A decomposed sliding mode control of the drive with an interior permanent magnet synchronous motor and flexible coupling is presented. Decomposition exploits principles of vector control to divide motor into channel for control of magnetic flux and channel for control of torque separately. Sliding mode control principles are exploited to keep demanded value of magnetic flux and to control load angle in the presence of vibration modes and external disturbances. To obtain continues voltage as a control variable a smoothing integrator follows signum function in both channels. As a modification the switching governed by signum function is replaced by the high gain including rearrangement of the control system block diagram. The simulations indicate that the control system yields the desired robustness and further investigations are recommended.

Author(s):  
Peikun Zhu ◽  
Yong Chen ◽  
Meng Li

Aiming at the parameter uncertainty and load torque disturbance of permanent magnet synchronous motor system, a terminal sliding mode control algorithm for permanent magnet synchronous motor based on the reaching law is proposed. First, a sliding mode control algorithm for sliding mode reaching law is proposed, which can dynamically adapt to the changes in system state. Second, a sliding mode disturbance observer is designed to estimate the lumped disturbance in real time and to compensate the controller for disturbance. On this basis, an online identification method based on disturbance observer for viscous friction coefficient and moment of inertia is used to reduce the influence of parameter uncertainty on the control system. Simulation and experimental results show the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document