scholarly journals Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
George Caminha-Maciel ◽  
Irineu Figueiredo

We present an analysis of the error involved in the so-called low induction number approximation in the electromagnetic methods. In particular, we focus on the EM34 equipment settings and field configurations, widely used for geophysical prospecting of laterally electrical conductivity anomalies and shallow targets. We show the theoretical error for the conductivity in both vertical and horizontal dipole coil configurations within the low induction number regime and up to the maximum measuring limit of the equipment. A linear relationship may be adjusted until slightly beyond the point where the conductivity limit for low induction number (B=1) is reached. The equations for the linear fit of the relative error in the low induction number regime are also given.

1983 ◽  
Vol 105 (2) ◽  
pp. 156-161 ◽  
Author(s):  
T. E. Osterkamp ◽  
K. Kawasaki ◽  
J. P. Gosink

Variations in the electrical conductivity of a soil and water system with temperature and salt concentration suggest that a soil containing hot and/or saline groundwater may be expected to have a higher conductivity compared to a cooler and/or less saline system. Temperature and conductivity surveys were carried out at Pilgrim Springs, on the Seward Peninsula, and at Chena Hot Springs, near Fairbanks, to test the use of a magnetic induction method (which measures electrical conductivity) for delineating near-surface hot groundwater sources in geothermal areas surrounded by permafrost. Comparison of the temperature data and conductivity data from these surveys demonstrates that the conductivity anomalies, as measured by the magnetic induction method, can be used to define the precise location of hot groundwater sources in these geothermal areas with the higher temperatures correlating with higher values of conductivity. Magnetic induction measurements of conductivity can also be used to define the lateral extent of the thawed geothermal areas (used for calculating the stored energy) in permafrost terrain. The utility of these magnetic induction measurements of conductivity for reconnaissance geophysical surveys of geothermal areas is that a much greater density of data can be obtained in a shorter time in comparison with shallow temperature measurements. In addition, it is simpler, cheaper and easier (physically) to obtain the data. While conductivity anomalies can result from other than hot and/or saline groundwater, these conductivity data, when coupled with a few measured temperature profiles and groundwater samples, should result in reliable reconnaissance level geophysical surveys in Alaskan geothermal areas.


1978 ◽  
Vol 3 (3) ◽  
pp. 225-253 ◽  
Author(s):  
Yoshimori Honkura

2012 ◽  
Vol 220-223 ◽  
pp. 1559-1563
Author(s):  
Rui Wu ◽  
Li Bao ◽  
Yuan Kui Xu

The relative direction for a constant speed can be determined according to the planar non-circular curve parts. To establish the mathematical model, a constant speed motion simulation system is designed. The parameters of (vH=5mm/s, δ<3") is commonly used for the simulation system to simulate the movement of drawing the error curve. The results show that by controlling the movement of the plane curve parts in mathematical model can derive the basic constant speed, the relative error of constant speed is less than 3%, it provides a reliable bias when apply to production practice.


2012 ◽  
Vol 189 (1) ◽  
pp. 331-342 ◽  
Author(s):  
J. A. Lehmann-Horn ◽  
M. Hertrich ◽  
S. A. Greenhalgh ◽  
A. G. Green

Sign in / Sign up

Export Citation Format

Share Document