scholarly journals Global Asymptotic Stability of a Family of Nonlinear Difference Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Maoxin Liao

In this note, we consider global asymptotic stability of the following nonlinear difference equationxn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, whereki∈ℕ  (i=1,2,…,v),  v≥2,β1∈[-1,1],β2,β3,…,βv∈(-∞,+∞),x-m,x-m+1,…,x-1∈(0,∞), andm=max1≤i≤v{ki}. Our result generalizes the corresponding results in the recent literature and simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-you Wang ◽  
Shu Wang ◽  
Zhi-wei Wang ◽  
Fei Gong ◽  
Rui-fang Wang

We study the global asymptotic stability of the equilibrium point for the fractional difference equationxn+1=(axn-lxn-k)/(α+bxn-s+cxn-t),n=0,1,…, where the initial conditionsx-r,x-r+1,…,x1,x0are arbitrary positive real numbers of the interval(0,α/2a),l,k,s,tare nonnegative integers,r=max⁡⁡{l,k,s,t}andα,a,b,care positive constants. Moreover, some numerical simulations are given to illustrate our results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qianhong Zhang ◽  
Jingzhong Liu ◽  
Zhenguo Luo

This paper deals with the boundedness, persistence, and global asymptotic stability of positive solution for a system of third-order rational difference equationsxn+1=A+xn/yn-1yn-2,yn+1=A+yn/xn-1xn-2,n=0,1,…, whereA∈(0,∞),x-i∈(0,∞);y-i∈(0,∞),i=0,1,2. Some examples are given to demonstrate the effectiveness of the results obtained.


2003 ◽  
Vol 10 (2) ◽  
pp. 343-352
Author(s):  
S. H. Saker

Abstract Using the Riccati transformation techniques, we establish some new oscillation criteria for the second-order nonlinear difference equation Some comparison between our theorems and the previously known results in special cases are indicated. Some examples are given to illustrate the relevance of our results.


2021 ◽  
Vol 71 (4) ◽  
pp. 903-924
Author(s):  
Yacine Halim ◽  
Asma Allam ◽  
Zineb Bengueraichi

Abstract In this paper, we study the periodicity, the boundedness of the solutions, and the global asymptotic stability of the positive equilibrium of the system of p nonlinear difference equations x n + 1 ( 1 ) = A + x n − 1 ( 1 ) x n ( p ) , x n + 1 ( 2 ) = A + x n − 1 ( 2 ) x n ( p ) , … , x n + 1 ( p − 1 ) = A + x n − 1 ( p − 1 ) x n ( p ) , x n + 1 ( p ) = A + x n − 1 ( p ) x n ( p − 1 ) $$\begin{equation*}x^{(1)}_{n+1}=A+\dfrac{x^{(1)}_{n-1}}{x^{(p)}_{n}},\quad x^{(2)}_{n+1}=A+\dfrac{x^{(2)}_{n-1}}{x^{(p)}_{n}},\quad\ldots,\quad x^{(p-1)}_{n+1}=A+\dfrac{x^{(p-1)}_{n-1}}{x^{(p)}_{n}},\quad x^{(p)}_{n+1}=A+\dfrac{x^{(p)}_{n-1}}{x^{(p-1)}_{n}} \end{equation*} $$ where n ∈ ℕ0, p ≥ 3 is an integer, A ∈ (0, +∞) and the initial conditions x − 1 ( j ) $x_{-1}^{(j)}$ , x 0 ( j ) $x_{0}^{(j)}$ , j = 1, 2, …, p are positive numbers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Stevo Stević

AbstractThe well-known first-order nonlinear difference equation $$ y_{n+1}=2y_{n}-xy_{n}^{2}, \quad n\in {\mathbb {N}}_{0}, $$ y n + 1 = 2 y n − x y n 2 , n ∈ N 0 , naturally appeared in the problem of computing the reciprocal value of a given nonzero real number x. One of the interesting features of the difference equation is that it is solvable in closed form. We show that there is a class of theoretically solvable higher-order nonlinear difference equations that include the equation. We also show that some of these equations are also practically solvable.


2018 ◽  
Vol 14 (2) ◽  
pp. 7975-7982
Author(s):  
Danhua He

In this paper, a class of nonlinear difference equations with time-varying delays is considered. Based on a generalized discrete Halanay inequality, some sufficient conditions for the attracting set and the global asymptotic stability of the nonlinear difference equations with time-varying delays are obtained.


2020 ◽  
Vol 18 (1) ◽  
pp. 1292-1301
Author(s):  
Huifang Liu ◽  
Zhiqiang Mao ◽  
Dan Zheng

Abstract This paper focuses on finite-order meromorphic solutions of nonlinear difference equation {f}^{n}(z)+q(z){e}^{Q(z)}{\text{Δ}}_{c}f(z)=p(z) , where p,q,Q are polynomials, n\ge 2 is an integer, and {\text{Δ}}_{c}f is the forward difference of f. A relationship between the growth and zero distribution of these solutions is obtained. Using this relationship, we obtain the form of these solutions of the aforementioned equation. Some examples are given to illustrate our results.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Guo-Mei Tang ◽  
Lin-Xia Hu ◽  
Gang Ma

We consider the higher-order nonlinear difference equation with the parameters, and the initial conditions are nonnegative real numbers. We investigate the periodic character, invariant intervals, and the global asymptotic stability of all positive solutions of the above-mentioned equation. In particular, our results solve the open problem introduced by Kulenović and Ladas in their monograph (see Kulenović and Ladas, 2002).


Sign in / Sign up

Export Citation Format

Share Document