scholarly journals Scale Alpha and Beta of Quantitative Convergence and Chemical Reactivity Analysis in Dual Cholinesterase/Monoamine Oxidase Inhibitors for the Alzheimer Disease Treatment Using Density Functional Theory (DFT)

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Alejandro Morales-Bayuelo ◽  
Rosa Baldiris ◽  
Ricardo Vivas-Reyes

Molecular quantum similarity descriptors and Density Functional Theory (DFT) based reactivity descriptors were studied for a series of cholinesterase/monoamine oxidase inhibitors used for the Alzheimer's disease treatment (AD). This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these molecules with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamine oxidase (MAO) A and B. The Topogeometrical Superposition Algorithm to handle flexible molecules (TGSA-Flex) alignment method was used to solve the problem of the relative orientation in the quantum similarity (QS) field. Using the molecular quantum similarity (MQS) field and reactivity descriptors supported in the DFT was possible the quantification of the steric and electrostatic effects through of the Coulomb and Overlap quantitative convergence scales (alpha and beta). In addition, an analysis of reactivity indexes is development, using global and local descriptors, identifying the binding sites and selectivity in the (cholinesterase/monoamine oxidase) inhibitors, understanding the retrodonor process, and showing new insight for drugs design in a disease of difficult control as Alzheimer.

2021 ◽  
Vol 2 (11) ◽  
pp. 1067-1073
Author(s):  
Roya Momen ◽  
Alejandro Morales-Bayuelo

The Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) models now have a wide range of applications; however, new methodologies are required due to the complexity in understanding their results. This research presents a generalized version of quantum similarity field and chemical reactivity descriptors within the density functional theory framework. By taking reference compounds, this generalized methodology can be used to understand the biological activity of a molecular set. In this sense, this methodology allows to study of the CoMFA in quantum similarity and chemical reactivity. It is feasible to investigate steric and electrostatic effects on local substitutions using this method. They were considering that how these methodologies could be used when the receptor is known or unknown.


Author(s):  
Sudip Pan ◽  
Ashutosh Gupta ◽  
Venkatesan Subramanian ◽  
Pratim K. Chattaraj

Developing effective structure-activity/property/toxicity relationships (QSAR/QSPR/QSTR) is very helpful in predicting biological activity, property, and toxicity of a given set of molecules. Regular change in these properties with the structural alteration is the main reason to obtain QSAR/QSPR/QSTR models. The advancement in making different QSAR/QSPR/QSTR models to describe activity, property, and toxicity of various groups of molecules is reviewed in this chapter. The successful implementation of Conceptual Density Functional Theory (CDFT)-based global as well as local reactivity descriptors in modeling effective QSAR/QSPR/QSTR is highlighted.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4043 ◽  
Author(s):  
Temiloluwa T. Adejumo ◽  
Nikolaos V. Tzouras ◽  
Leandros P. Zorba ◽  
Dušanka Radanović ◽  
Andrej Pevec ◽  
...  

Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alejandro Morales-Bayuelo ◽  
Ricardo Vivas-Reyes

A theoretical study on the molecular polarization of thiophene and furan under the action of an electric field using Local Quantum Similarity Indexes (LQSI) was performed. This model is based on Hirshfeld partitioning of electron density within the framework of Density Functional Theory (DFT). Six local similarity indexes were used: overlap, overlap-interaction, coulomb, coulomb-interaction, Euclidian distances of overlap, and Euclidean distances of coulomb. In addition Topo-Geometrical Superposition Algorithm (TGSA) was used as a method of alignment. This method provides a straightforward procedure to solve the problem of molecular relative orientation. It provides a tool to evaluate molecular quantum similarity, enabling the study of structural systems, which differ in only one atom such as thiophene and furan (point group C2v) and cyclopentadienyl molecule (point group D5h). Additionally, this model can contribute to the interpretation of chemical bonds, and molecular interactions in the framework of the solvent effect theory.


Sign in / Sign up

Export Citation Format

Share Document