scholarly journals New Insights About Aromaticity using Molecular Polarization, Molecular Quantum Similarity and Chemical Reactivity Descriptors Supported in the Density Functional Theory

Author(s):  
Alejandro Morales Bayuelo
2021 ◽  
Vol 2 (11) ◽  
pp. 1067-1073
Author(s):  
Roya Momen ◽  
Alejandro Morales-Bayuelo

The Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) models now have a wide range of applications; however, new methodologies are required due to the complexity in understanding their results. This research presents a generalized version of quantum similarity field and chemical reactivity descriptors within the density functional theory framework. By taking reference compounds, this generalized methodology can be used to understand the biological activity of a molecular set. In this sense, this methodology allows to study of the CoMFA in quantum similarity and chemical reactivity. It is feasible to investigate steric and electrostatic effects on local substitutions using this method. They were considering that how these methodologies could be used when the receptor is known or unknown.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550026 ◽  
Author(s):  
Davood Farmanzadeh ◽  
Hamid Rezainejad

In this study, by the density functional theory (DFT) method-based reactivity descriptors, the electronic properties and chemical reactivity of Fe substituted nanocage, FeB35+nN36-n(n = 0, 1), were investigated in gaseous and aqueous phases. The calculated binding energies of Fe atoms revealed that the substituting Fe atom in some locations of nanocage make the system more stable. The calculated global descriptors showed that the substituted Fe remarkably increases the chemical reactivity of B36N36. Also, local descriptors showed that the high reactivity of substituted nanocages is mainly related to Fe atom and these chemical species are more talented for nucleophilic attacks. The results of this work may be useful to investigate the effects of substituted metals in chemical reactivity of BN nanostructures.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Alejandro Morales-Bayuelo ◽  
Rosa Baldiris ◽  
Ricardo Vivas-Reyes

Molecular quantum similarity descriptors and Density Functional Theory (DFT) based reactivity descriptors were studied for a series of cholinesterase/monoamine oxidase inhibitors used for the Alzheimer's disease treatment (AD). This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these molecules with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamine oxidase (MAO) A and B. The Topogeometrical Superposition Algorithm to handle flexible molecules (TGSA-Flex) alignment method was used to solve the problem of the relative orientation in the quantum similarity (QS) field. Using the molecular quantum similarity (MQS) field and reactivity descriptors supported in the DFT was possible the quantification of the steric and electrostatic effects through of the Coulomb and Overlap quantitative convergence scales (alpha and beta). In addition, an analysis of reactivity indexes is development, using global and local descriptors, identifying the binding sites and selectivity in the (cholinesterase/monoamine oxidase) inhibitors, understanding the retrodonor process, and showing new insight for drugs design in a disease of difficult control as Alzheimer.


2021 ◽  
Vol 37 (4) ◽  
pp. 805-812
Author(s):  
Ahissandonatien Ehouman ◽  
Adjoumanirodrigue Kouakou ◽  
Fatogoma Diarrassouba ◽  
Hakim Abdel Aziz Ouattara ◽  
Paulin Marius Niamien

Our theoretical study of stability and reactivity was carried out on six (06) molecules of a series of pyrimidine tetrazole hybrids (PTH) substituted with H, F, Cl, Br, OCH3 and CH3 atoms and groups of atoms using the density function theory (DFT). Analysis of the thermodynamic formation quantities confirmed the formation and existence of the series of molecules studied. Quantum chemical calculations at the B3LYP / 6-311G (d, p) level of theory determined molecular descriptors. Global reactivity descriptors were also determined and analyzed. Thus, the results showed that the compound PTH_1 is the most stable, and PTH_5 is the most reactive and nucleophilic. Similarly, the compound PTH_4 is the most electrophilic. The analysis of the local descriptors and the boundary molecular orbitals allowed us to identify the preferred atoms for electrophilic and nucleophilic attacks.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4043 ◽  
Author(s):  
Temiloluwa T. Adejumo ◽  
Nikolaos V. Tzouras ◽  
Leandros P. Zorba ◽  
Dušanka Radanović ◽  
Andrej Pevec ◽  
...  

Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Five density functionals, CAM-B3LYP, LC-ωHPBE, MN12SX, N12SX, and ωB97XD, in connection with the Def2TZVP basis set were assessed together with the SMD solvation model for the calculation of the molecular properties, chemical reactivities, and solubilities of some pigments derived from astaxanthin, β-cryptoxanthin, fucoxanthin, myxol, siphonaxanthin, siphonein, and zeaxanthin marine carotenoids in the presence of different solvents (hexane, methanol, ethanol, and water). All the chemical reactivity descriptors for the systems were calculated via conceptual density functional theory (CDFT). Finally, the potential bioavailability and druggability as well as the bioactivity scores for the marine carotenoid pigments were predicted through different methodologies already reported in the literature, which have been previously validated during the study of other natural products obtained from marine sources.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2707 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Virotoxins are monocyclic peptides formed by at least five different compounds: alaviroidin, viroisin, deoxoviroisin, viroidin and deoxovirodin. These are toxic peptides singularly found in Amanita virosa mushrooms. Here we perform computational studies on the structural and electronic conformations of these peptides using the MN12SX/Def2TZVP/H2O chemistry model to investigate their chemical reactivity. CDFT-based descriptors (for Conceptual Density Functional Theory) (e.g., Parr functions and Nucleophilicity) are also considered. At the same time, other properties (e.g., pKas) will be determined and used to study virotoxins solubility and to inform decisions about repurposing these agents in medicinal chemistry.


Sign in / Sign up

Export Citation Format

Share Document