scholarly journals Using WSR-88D Polarimetric Data to Identify Bird-Contaminated Doppler Velocities

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Jiang ◽  
Qin Xu ◽  
Pengfei Zhang ◽  
Kang Nai ◽  
Liping Liu

As an important part of Doppler velocity data quality control for radar data assimilation and other quantitative applications, an automated technique is developed to identify and remove contaminated velocities by birds, especially migrating birds. This technique builds upon the existing hydrometeor classification algorithm (HCA) for dual-polarimetric WSR-88D radars developed at the National Severe Storms Laboratory, and it performs two steps. In the first step, the fuzzy-logic method in the HCA is simplified and used to identify biological echoes (mainly from birds and insects). In the second step, another simple fuzzy logic method is developed to detect bird echoes among the biological echoes identified in the first step and thus remove bird-contaminated velocities. The membership functions used by the fuzzy logic method in the second step are extracted from normalized histograms of differential reflectivity and differential phase for birds and insects, respectively, while the normalized histograms are constructed by polarimetric data collected during the 2012 fall migrating season and sorted for bird and insects, respectively. The performance and effectiveness of the technique are demonstrated by real-data examples.

2020 ◽  
Vol 13 (2) ◽  
pp. 537-551
Author(s):  
Shuai Zhang ◽  
Xingyou Huang ◽  
Jinzhong Min ◽  
Zhigang Chu ◽  
Xiaoran Zhuang ◽  
...  

Abstract. To obtain better performance of meteorological applications, it is necessary to distinguish radar echoes from meteorological and non-meteorological targets. After a comprehensive analysis of the computational efficiency and radar system characteristics, we propose a fuzzy logic method that is similar to the MetSignal algorithm; the performance of this method is improved significantly in weak-signal regions where polarimetric variables are severely affected by noise. In addition, post-processing is adjusted to prevent anomalous propagation at a far range from being misclassified as meteorological echo. Moreover, an additional fuzzy logic echo classifier is incorporated into post-processing to suppress misclassification in the melting layer. An independent test set is selected to evaluate algorithm performance, and the statistical results show an improvement in the algorithm performance, especially with respect to the classification of meteorological echoes in weak-signal regions.


2019 ◽  
Author(s):  
Shuai Zhang ◽  
Xingyou Huang ◽  
Jinzhong Min ◽  
Hengheng Zhang

Abstract. In order to obtain better performance of meteorological applications, it is necessary to distinguish radar echoes from meteorological and non-meteorological targets. After the comprehensive analysis of the computational efficiency and radar system characteristics, a fuzzy logic method similar to the MetSignal algorithm is adopted, but its performance is improved significantly in weak signal regions where polarimetric variables are severely affected by noise. In addition, post-processing is adjusted to prevent anomalous propagation at far range to be misclassified as meteorological echo. Moreover, an additional fuzzy logic echo classifier is introduced into post-processing to suppress misclassification in the melting layer. An independent test set is selected to evaluate algorithm performance, and the statistical results show that the performance of the algorithm has been significantly improved, especially with respect to the classification of meteorological echoes in weak signal regions.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Qin Xu ◽  
Kang Nai ◽  
Shun Liu ◽  
Chris Karstens ◽  
Travis Smith ◽  
...  

The Doppler velocity dealiasing technique based on alias-robust VAD and variational (AR-Var) analyses developed at the National Severe Storms Laboratory for radar data quality control and assimilation is further improved in its two-step procedures: the reference check in the first step and the continuity check in the second step. In the first step, the alias-robust variational analysis is modified adaptively and used in place of the alias-robust velocity-azimuth display (VAD) analysis for all scan modes (rather than solely the WSR-88D volume coverage pattern 31 with the Nyquist velocityvNreduced below 12 m s−1and the TDWR Mod80 withvNreduced below 15 m s−1), so more raw data can pass the stringent threshold conditions used by the reference check in the first step. This improves the dealiased data coverage without false dealiasing to better satisfy the high data quality standard required by radar data assimilation. In the second step, new procedures are designed and added to the continuity check to increase the dealiased data coverage over storm-scale areas threatened by intense mesocyclones and their generated tornados. The performances of the improved dealiasing technique versus the existing techniques are exemplified by the results obtained for tornadic storms scanned by the operational KTLX radar in Oklahoma.


2021 ◽  
pp. 3790-3803
Author(s):  
Heba Kh. Abbas ◽  
Haidar J. Mohamad

    The Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Low) for each number showed unique behavior to recognize any number. Normalized Absolute Error (NAE) equation was used to evaluate the error percentage for the suggested algorithm. The lowest error was 0.001% compared with the real number. The data were checked by the support vector machine (SVM) algorithm to confirm the quality and the efficiency of the suggested method, where the matching was found to be 100% between the data of the suggested method and SVM. The six properties offer a new method to build a rule-based feature extraction technique in different applications and detect any text recognition with a low computational cost.


Sign in / Sign up

Export Citation Format

Share Document