scholarly journals Variable-Coefficient Exact Solutions for Nonlinear Differential Equations by a New Bernoulli Equation-Based Subequation Method

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Chunxia Qi ◽  
Shunliang Huang

A new Bernoulli equation-based subequation method is proposed to establish variable-coefficient exact solutions for nonlinear differential equations. For illustrating the validity of this method, we apply it to the asymmetric (2 + 1)-dimensional NNV system and the Kaup-Kupershmidt equation. As a result, some new exact solutions with variable functions coefficients for them are successfully obtained.

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fanning Meng ◽  
Yongyi Gu

In this article, exact solutions of two (3+1)-dimensional nonlinear differential equations are derived by using the complex method. We change the (3+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and generalized shallow water (gSW) equation into the complex differential equations by applying traveling wave transform and show that meromorphic solutions of these complex differential equations belong to class W, and then, we get exact solutions of these two (3+1)-dimensional equations.


The homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.


Author(s):  
Ahmet Bekir ◽  
Esin Aksoy

The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Şamil Akçaği ◽  
Tuğba Aydemir

AbstractIn this paper, firstly, we give a connection between well known and commonly used methods called the $\left( {{{G'} \over G}} \right)$ -expansion method and the modified extended tanh method which are often used for finding exact solutions of nonlinear partial differential equations (NPDEs). We demonstrate that giving a convenient transformation and formula, all of the solutions obtained by using the $\left( {{{G'} \over G}} \right)$ - expansion method can be converted the solutions obtained by using the modified extended tanh method. Secondly, contrary to the assertion in some papers, the $\left( {{{G'} \over G}} \right)$-expansion method gives neither all of the solutions obtained by using the other method nor new solutions for NPDEs. Namely, while the modified extended tanh method gives more solutions in a straightforward, concise and elegant manner without reproducing a lot of different forms of the same solution. On the other hand, the $\left( {{{G'} \over G}} \right)$-expansion method provides less solutions in a rather cumbersome form. Lastly, we obtain new exact solutions for the Lonngren wave equation as an illustrative example by using these methods.


Sign in / Sign up

Export Citation Format

Share Document