scholarly journals The Laplace-Adomian-Pade Technique for the ENSO Model

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Yi Zeng

The Laplace-Adomian-Pade method is used to find approximate solutions of differential equations with initial conditions. The oscillation model of the ENSO is an important nonlinear differential equation which is solved analytically in this study. Compared with the exact solution from other decomposition methods, the approximate solution shows the method’s high accuracy with symbolic computation.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2021 ◽  
Vol 26 (2) ◽  
Author(s):  
Samaher Marez

  The aim of this paper, a reliable iterative method is presented for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method.  Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibit that this technique has compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.


Author(s):  
M. V. Ignatenko ◽  
L. A. Yanovich

In this paper, we consider the problem of the exact and approximate solutions of certain differential equations with variational derivatives of the first and second orders. Some information about the variational derivatives and explicit formulas for the exact solutions of the simplest equations with the first variational derivatives are given. An interpolation method for solving ordinary differential equations with variational derivatives is demonstrated. The general scheme of an approximate solution of the Cauchy problem for nonlinear differential equations with variational derivatives of the first order, based on the use of the operator interpolation apparatus, is presented. The exact solution of the differential equation of the hyperbolic type with variational derivatives, similar to the classical Dalamber solution, is obtained. The Hermite interpolation problem with the conditions of coincidence in the nodes of the interpolated and interpolation functionals, as well as their variational derivatives of the first and second orders, is considered for functionals defined on the sets of differentiable functions. The found explicit representation of the solution of the given interpolation problem is based on an arbitrary Chebyshev system of functions. This solution is generalized for the case of interpolation of functionals on one out of two variables and applied to construct an approximate solution of the Cauchy problem for the differential equation of the hyperbolic type with variational derivatives. The description of the material is illustrated by numerous examples.


2014 ◽  
Vol 687-691 ◽  
pp. 1522-1527
Author(s):  
Ting Jing Zhao

The purpose of this paper is to propose an efficient numerical method for solving Volterra-type integro-differential equation of the second kinds. This method based on Legendre-Gauss-Radau collocation, which is easy to be implemented especially for nonlinear and possesses high accuracy. Also, the method can be done by proceeding in time step by step. Illustrative examples have been discussed to demonstrate the validity and applicability of the technique, and the results have been compared with the exact solution.


1970 ◽  
Vol 3 (3) ◽  
pp. 391-411 ◽  
Author(s):  
B. J. Noye

For three possible types of tide-well systems the non-dimensional head response, Y(τ), to a sinusoidal fluctuation of the sea-level is given by the differential equation Estimates of the non-dimensional well response Z(τ) = sinτ - Y(τ) are found by considering the steady state solutions of the above equation. With n = 2 the equation is linear and an exact solution can be found; for n ≠ 2 the equation is non-linear and several methods which give approximate solutions are described. The methods used can be extended to cover other values of n; for example, with n = 4 the equation corresponds to one governing oscillations near resonance in open pipes.


2020 ◽  
Vol 8 (5) ◽  
pp. 527-534
Author(s):  
Ali F Jameel ◽  
Akram H. Shather ◽  
N.R. Anakira ◽  
A. K. Alomari ◽  
Azizan Saaban

Author(s):  
Yongjin Li ◽  
Yan Shen

The aim of this paper is to prove the stability in the sense of Hyers-Ulam of differential equation of second ordery′′+p(x)y′+q(x)y+r(x)=0. That is, iffis an approximate solution of the equationy′′+p(x)y′+q(x)y+r(x)=0, then there exists an exact solution of the equation near tof.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
U. Filobello-Nino ◽  
H. Vazquez-Leal ◽  
A. Sarmiento-Reyes ◽  
B. Benhammouda ◽  
V. M. Jimenez-Fernandez ◽  
...  

The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient.


Author(s):  
Eman Ali Hussain ◽  
Yahya Mourad Abdul – Abbass

In this paper, we introduce a hybrid method to use fuzzy differential equation, and Genetic Turing Machine developed for solving nth order fuzzy differential equation under Seikkala differentiability concept [14]. The Errors between the exact solutions and the approximate solutions were computed by fitness function and the Genetic Turing Machine results are obtained. After comparing the approximate solution obtained by the GTM method with approximate to the exact solution, the approximate results by Genetic Turing Machine demonstrate the efficiency of hybrid methods for solving fuzzy differential equations (FDE).


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


Sign in / Sign up

Export Citation Format

Share Document