Global stability of a delayed SIRS computer virus propagation model

2013 ◽  
Vol 91 (3) ◽  
pp. 347-367 ◽  
Author(s):  
Yoshiaki Muroya ◽  
Yoichi Enatsu ◽  
Huaixing Li
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chunming Zhang

This paper presents a new linear computer viruses propagation model on multilayer networks to explore the mechanism of computer virus propagation. Theoretical analysis demonstrates that the maximum eigenvalue of the sum of all the subnetworks is a vital factor in determining the viral prevalence. And then, a new sufficient condition for the global stability of virus-free equilibrium has been obtained. The persistence of computer virus propagation system has also been proved. Eventually, some numerical simulation results verify the main conclusions of the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu

A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold valueR0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable ifR0<1, whereas the virus equilibrium is globally asymptotically stable ifR0>1. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu ◽  
Jiming Liu

In a recent paper by J. Ren et al. (2012), a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.


2012 ◽  
Vol 89 (17) ◽  
pp. 2307-2314 ◽  
Author(s):  
Lu-Xing Yang ◽  
Xiaofan Yang ◽  
Luosheng Wen ◽  
Jiming Liu

2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640009 ◽  
Author(s):  
Yunxian Dai ◽  
Yiping Lin ◽  
Huitao Zhao ◽  
Chaudry Masood Khalique

In this paper, a delayed computer virus propagation model with a saturation incidence rate and a time delay describing temporary immune period is proposed and its dynamical behaviors are studied. The threshold value [Formula: see text] is given to determine whether the virus dies out completely. By comparison arguments and iteration technique, sufficient conditions are obtained for the global asymptotic stabilities of the virus-free equilibrium and the virus equilibrium. Taking the delay as a parameter, local Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stabilities of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations (FDEs). Finally, numerical simulations are carried out to illustrate the main theoretical results.


Sign in / Sign up

Export Citation Format

Share Document