scholarly journals Haar Wavelet Operational Matrix Method for Fractional Oscillation Equations

Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman

We utilized the Haar wavelet operational matrix method for fractional order nonlinear oscillation equations and find the solutions of fractional order force-free and forced Duffing-Van der Pol oscillator and higher order fractional Duffing equation on large intervals. The results are compared with the results obtained by the other technique and with exact solution.

2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Firdous A. Shah ◽  
R. Abbas

AbstractIn this paper, we propose a new operational matrix method of fractional order integration based on Haar wavelets to solve fractional order differential equations numerically. The properties of Haar wavelets are first presented. The properties of Haar wavelets are used to reduce the system of fractional order differential equations to a systemof algebraic equationswhich can be solved numerically byNewton’s method.Moreover, the proposed method is derived without using the block pulse functions considered in open literature and does not require the inverse of the Haar matrices. Numerical examples are included to demonstrate the validity and applicability of the present method.


2015 ◽  
Vol 12 (06) ◽  
pp. 1550033 ◽  
Author(s):  
M. M. Khader

In this paper, we implement an efficient numerical technique which we call fractional Chebyshev finite difference method (FChFDM). The fractional derivatives are presented in terms of Caputo sense. The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a nonuniform finite difference scheme. The error bound for the fractional derivatives is introduced. We used the introduced technique to solve numerically the fractional-order delay BVPs. The application of the proposed method to introduced problem leads to algebraic systems which can be solved by an appropriate numerical method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.


2021 ◽  
Vol 45 (4) ◽  
pp. 571-585
Author(s):  
AMIRAHMAD KHAJEHNASIRI ◽  
◽  
M. AFSHAR KERMANI ◽  
REZZA EZZATI ◽  
◽  
...  

This article presents a numerical method for solving nonlinear two-dimensional fractional Volterra integral equation. We derive the Hat basis functions operational matrix of the fractional order integration and use it to solve the two-dimensional fractional Volterra integro-differential equations. The method is described and illustrated with numerical examples. Also, we give the error analysis.


Sign in / Sign up

Export Citation Format

Share Document