Haar Wavelet Operational Matrix Method for the Numerical Solution of Fractional Order Differential Equations

2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Firdous A. Shah ◽  
R. Abbas

AbstractIn this paper, we propose a new operational matrix method of fractional order integration based on Haar wavelets to solve fractional order differential equations numerically. The properties of Haar wavelets are first presented. The properties of Haar wavelets are used to reduce the system of fractional order differential equations to a systemof algebraic equationswhich can be solved numerically byNewton’s method.Moreover, the proposed method is derived without using the block pulse functions considered in open literature and does not require the inverse of the Haar matrices. Numerical examples are included to demonstrate the validity and applicability of the present method.

2021 ◽  
Vol 45 (4) ◽  
pp. 571-585
Author(s):  
AMIRAHMAD KHAJEHNASIRI ◽  
◽  
M. AFSHAR KERMANI ◽  
REZZA EZZATI ◽  
◽  
...  

This article presents a numerical method for solving nonlinear two-dimensional fractional Volterra integral equation. We derive the Hat basis functions operational matrix of the fractional order integration and use it to solve the two-dimensional fractional Volterra integro-differential equations. The method is described and illustrated with numerical examples. Also, we give the error analysis.


Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman

We utilized the Haar wavelet operational matrix method for fractional order nonlinear oscillation equations and find the solutions of fractional order force-free and forced Duffing-Van der Pol oscillator and higher order fractional Duffing equation on large intervals. The results are compared with the results obtained by the other technique and with exact solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Balaji

A Legendre wavelet operational matrix method (LWM) is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Sign in / Sign up

Export Citation Format

Share Document