scholarly journals Generalized Haar wavelet operational matrix method for solving hyperbolic heat conduction in thin surface layers

2018 ◽  
Vol 11 ◽  
pp. 243-252 ◽  
Author(s):  
Suazlan Mt Aznam ◽  
M.S.H. Chowdhury
2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Firdous A. Shah ◽  
R. Abbas

AbstractIn this paper, we propose a new operational matrix method of fractional order integration based on Haar wavelets to solve fractional order differential equations numerically. The properties of Haar wavelets are first presented. The properties of Haar wavelets are used to reduce the system of fractional order differential equations to a systemof algebraic equationswhich can be solved numerically byNewton’s method.Moreover, the proposed method is derived without using the block pulse functions considered in open literature and does not require the inverse of the Haar matrices. Numerical examples are included to demonstrate the validity and applicability of the present method.


Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman

We utilized the Haar wavelet operational matrix method for fractional order nonlinear oscillation equations and find the solutions of fractional order force-free and forced Duffing-Van der Pol oscillator and higher order fractional Duffing equation on large intervals. The results are compared with the results obtained by the other technique and with exact solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Pongsakorn Sunthrayuth ◽  
Noufe H. Aljahdaly ◽  
Amjid Ali ◽  
Rasool Shah ◽  
Ibrahim Mahariq ◽  
...  

This paper proposes a numerical method for solving fractional relaxation-oscillation equations. A relaxation oscillator is a type of oscillator that is based on how a physical system returns to equilibrium after being disrupted. The primary equation of relaxation and oscillation processes is the relaxation-oscillation equation. The fractional derivatives in the relaxation-oscillation equations under consideration are defined in the Φ -Caputo sense. The numerical method relies on a novel type of operational matrix method, namely, the Φ -Haar wavelet operational matrix method. The operational matrix approach has a lower computational complexity. The proposed scheme simplifies the main problem to a set of linear algebraic equations. Numerical examples demonstrate the validity and applicability of the proposed technique.


Author(s):  
Umer Saeed

In this paper, we present a reliable method for solving system of fractional nonlinear differential equations. The proposed technique utilizes the Haar wavelets in conjunction with a quasilinearization technique. The operational matrices are derived and used to reduce each equation in a system of fractional differential equations to a system of algebraic equations. Convergence analysis and implementation process for the proposed technique are presented. Numerical examples are provided to illustrate the applicability and accuracy of the technique.


Sign in / Sign up

Export Citation Format

Share Document