scholarly journals Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
R. Silva-Ortigoza ◽  
F. Carrizosa-Corral ◽  
J. J. Gálvez-Gamboa ◽  
M. Marcelino-Aranda ◽  
D. Muñoz-Carrillo ◽  
...  

Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM) and, more recently, the sigma-delta-modulator (Σ-Δ-modulator). Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or aΣ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE) index shows that, at frequencies with similar efficiency, theΣ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research.

Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1551-1570 ◽  
Author(s):  
Hossein Mirzaeinejad ◽  
Ali Mohammad Shafei

SUMMARYThis study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1286-1296 ◽  
Author(s):  
Karl L Fetzer ◽  
Sergey Nersesov ◽  
Hashem Ashrafiuon

This article presents the development, implementation, and comparison of two trajectory tracking nonlinear controllers for underactuated surface vessels. A control approach capable of stabilizing all the states of any planar vehicle is specifically adapted to surface vessels. The method relies on transformation of the six position and velocity state dynamics into a four-state error dynamics. The backstepping and sliding mode control laws are then derived for stabilization of the error dynamics and proven to stabilize all system states. Simulations are presented in the absence and presence of modeling uncertainties and unknown disturbances. An experimental setup is then described, followed by successful experimental implementation and comparison of the two controllers.


1993 ◽  
Vol 115 (3) ◽  
pp. 566-569 ◽  
Author(s):  
Cao Bailin ◽  
Chen Huitang

In this paper, it is proved that a trajectory tracking system of a manipulator is globally stable if the system is controlled under the decentralized PD control law plus a sliding term with a constant coefficient, and the norm of the coefficient matrix of its differential term is no less than that of the centripetal and Coriolis’ force term corresponding to the desired angular velocity, i.e., ∥Kd∥ ≥ ∥C(q, q˙d)∥. Condition ∥Kd∥ ≥ ∥C(q, q˙d)∥ implies that Kd increases only with q˙d instead of q˙. A type of globally asymptotically stable adaptive sliding mode PD-based control scheme is proposed, and the proof of stability of the system is also given. It is easy to implement in real-time compared with other adaptive control laws as no estimation of gravitational and frictional forces is necessary.


Author(s):  
Mustafa Abbas Fadel Al-Qaisi ◽  
Mohanad A. Shehab ◽  
Ammar Al-Gizi ◽  
Mohammed Al-Saadi

<span>This paper investigated the performance of the sliding mode control technique for dc/dc converter using frequency response method. The applications of the step down type switching regulator) buck converter (are found in the devices that use batteries as power source like laptop, cell phones, electric vehicle, and recently, it  has also been used in the renewable energy processing, as a maximum output power can be achieved at higher efficiency. In order to optimize the efficiency and for convenient power management, the issues like power on transients, the effect of load variation, Switching and Electromagnetic interference (EMI) losses has to be overcome for which controllers are used. In the proposed method, pulse width modulation (PWM) based on proportional-integral-derivative sliding mode voltage controller (PID SMVC) is designed for a buck converter and the response for appropriate control parameters has been obtained. The system stability has been examined and analyzed from the performance characteristics, which shows clearly that the buck converter controlled by the sliding mode controller has fast dynamic response and it’s very efficient for various applications.</span>


Sign in / Sign up

Export Citation Format

Share Document