scholarly journals Mutation Analysis Approach to Develop Reliable Object-Oriented Software

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Monalisa Sarma

In general, modern programs are large and complex and it is essential that they should be highly reliable in applications. In order to develop highly reliable software, Java programming language developer provides a rich set of exceptions and exception handling mechanisms. Exception handling mechanisms are intended to help developers build robust programs. Given a program with exception handling constructs, for an effective testing, we are to detect whether all possible exceptions are raised and caught or not. However, complex exception handling constructs make it tedious to trace which exceptions are handled and where and which exceptions are passed on. In this paper, we address this problem and propose a mutation analysis approach to develop reliable object-oriented programs. We have applied a number of mutation operators to create a large set of mutant programs with different type of faults. We then generate test cases and test data to uncover exception related faults. The test suite so obtained is applied to the mutant programs measuring the mutation score and hence verifying whether mutant programs are effective or not. We have tested our approach with a number of case studies to substantiate the efficacy of the proposed mutation analysis technique.

Author(s):  
Macario Polo ◽  
Mario Piattini

This chapter presents a new testing technique called “test-case mutation.” The idea is to apply a set of specific mutation operators to test cases for object-oriented software, which produces different versions of the original test cases. Then, the results of the original test case and of its corresponding mutants are compared; if they are very similar, the technique highlights the possible presence of a fault in the class under test. The technique seems useful for testing the correctness of strongly constrained classes. The authors have implemented a supporting tool that is also described in the chapter.


1999 ◽  
Vol 7 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Brian Blount ◽  
Siddhartha Chatterjee

This paper describes the design and implementation of high performance numerical software in Java. Our primary goals are to characterize the performance of object‐oriented numerical software written in Java and to investigate whether Java is a suitable language for such endeavors. We have implemented JLAPACK, a subset of the LAPACK library in Java. LAPACK is a high‐performance Fortran 77 library used to solve common linear algebra problems. JLAPACK is an object‐oriented library, using encapsulation, inheritance, and exception handling. It performs within a factor of four of the optimized Fortran version for certain platforms and test cases. When used with the native BLAS library, JLAPACK performs comparably with the Fortran version using the native BLAS library. We conclude that high‐performance numerical software could be written in Java if a handful of concerns about language features and compilation strategies are adequately addressed.


Author(s):  
Tran Thanh Luong ◽  
Le My Canh

JavaScript has become more and more popular in recent years because its wealthy features as being dynamic, interpreted and object-oriented with first-class functions. Furthermore, JavaScript is designed with event-driven and I/O non-blocking model that boosts the performance of overall application especially in the case of Node.js. To take advantage of these characteristics, many design patterns that implement asynchronous programming for JavaScript were proposed. However, choosing a right pattern and implementing a good asynchronous source code is a challenge and thus easily lead into less robust application and low quality source code. Extended from our previous works on exception handling code smells in JavaScript and exception handling code smells in JavaScript asynchronous programming with promise, this research aims at studying the impact of three JavaScript asynchronous programming patterns on quality of source code and application.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Man Zhang ◽  
Bogdan Marculescu ◽  
Andrea Arcuri

AbstractNowadays, RESTful web services are widely used for building enterprise applications. REST is not a protocol, but rather it defines a set of guidelines on how to design APIs to access and manipulate resources using HTTP over a network. In this paper, we propose an enhanced search-based method for automated system test generation for RESTful web services, by exploiting domain knowledge on the handling of HTTP resources. The proposed techniques use domain knowledge specific to RESTful web services and a set of effective templates to structure test actions (i.e., ordered sequences of HTTP calls) within an individual in the evolutionary search. The action templates are developed based on the semantics of HTTP methods and are used to manipulate the web services’ resources. In addition, we propose five novel sampling strategies with four sampling methods (i.e., resource-based sampling) for the test cases that can use one or more of these templates. The strategies are further supported with a set of new, specialized mutation operators (i.e., resource-based mutation) in the evolutionary search that take into account the use of these resources in the generated test cases. Moreover, we propose a novel dependency handling to detect possible dependencies among the resources in the tested applications. The resource-based sampling and mutations are then enhanced by exploiting the information of these detected dependencies. To evaluate our approach, we implemented it as an extension to the EvoMaster tool, and conducted an empirical study with two selected baselines on 7 open-source and 12 synthetic RESTful web services. Results show that our novel resource-based approach with dependency handling obtains a significant improvement in performance over the baselines, e.g., up to + 130.7% relative improvement (growing from + 27.9% to + 64.3%) on line coverage.


2005 ◽  
Vol 40 (2) ◽  
pp. 27-32 ◽  
Author(s):  
Shujuan Jiang ◽  
Baowen Xu

2000 ◽  
Vol 49 (1) ◽  
pp. 26-36 ◽  
Author(s):  
A. Von Mayrhauser ◽  
R. France ◽  
M. Scheetz ◽  
E. Dahlman

Test case prioritization (TCP) is a software testing technique that finds an ideal ordering of test cases for regression testing, so that testers can obtain the maximum benefit of their test suite, even if the testing process is stop at some arbitrary point. The recent trend of software development uses OO paradigm. This paper proposed a cost-cognizant TCP approach for object-oriented software that uses path-based integration testing. Path-based integration testing will identify the possible execution path and extract these paths from the Java System Dependence Graph (JSDG) model of the source code using forward slicing technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases based on the severity detection per unit cost for each of the dependent faults. The proposed technique was known as Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP) and being implemented as regression testing approach for experiment.


Sign in / Sign up

Export Citation Format

Share Document