scholarly journals Prediction of Mass Transfer Time Relaxation Parameter for Boiling Simulation on the Shell-Side of LNG Spiral Wound Heat Exchanger

2014 ◽  
Vol 6 ◽  
pp. 275708 ◽  
Author(s):  
Zhi-Yong Wu ◽  
Wei-Hua Cai ◽  
Guo-Dong Qiu ◽  
Yi-Qiang Jiang

The objective of this present study is to propose an approach to predict mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger (SWHE). The numerical model for the shell-side of LNG SWHE was established. For propane and ethane, a predicted value of mass transfer time relaxation parameter was presented through the equivalent evaporation simulations and was validated by the Chisholm void fraction correlation recommended under various testing conditions. In addition, heat transfer deviations between simulations using the predicted value of mass transfer time relaxation parameter and experiments from Aunan were investigated. The boiling characteristics of SWHE shell-side were also visualized based on the simulations with VOF model. The method of predicting mass transfer time relaxation parameter may be well applicable to various phase change simulations.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3634
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

With the increasing trend toward the miniaturization of electronic devices, the issue of heat dissipation becomes essential. The use of phase changes in a two-phase closed thermosyphon (TPCT) enables a significant reduction in the heat generated even at high temperatures. In this paper, we propose a modification of the evaporation–condensation model implemented in ANSYS Fluent. The modification was to manipulate the value of the mass transfer time relaxation parameter for evaporation and condensation. The developed model in the form of a UDF script allowed the introduction of additional source equations, and the obtained solution is compared with the results available in the literature. The variable value of the mass transfer time relaxation parameter during condensation rc depending on the density of the liquid and vapour phase was taken into account in the calculations. However, compared to previous numerical studies, more accurate modelling of the phase change phenomenon of the medium in the thermosyphon was possible by adopting a mass transfer time relaxation parameter during evaporation re = 1. The assumption of ten-fold higher values resulted in overestimated temperature values in all sections of the thermosyphon. Hence, the coefficient re should be selected individually depending on the case under study. A too large value may cause difficulties in obtaining the convergence of solutions, which, in the case of numerical grids with many elements (especially three-dimensional), significantly increases the computation time.


2011 ◽  
Vol 19 (03) ◽  
pp. 167-175 ◽  
Author(s):  
ZAN-SHE WANG ◽  
ZHAO-LIN GU ◽  
GUO-ZHENG WANG ◽  
FENG CUI ◽  
SHI-YU FENG

A novel membrane heat exchanger was proposed and analyzed. It was expected that the novel heat exchanger could be applied to the lithium bromide absorption chiller. Polyvinylidene fluoride hollow fiber module was adopted as the solution heat exchanger. The hot feed solution from the generator flowed into the lumen side of the membranes while the cold feed solution from the absorber flowed away from the shell side. Heat transfer and mass transfer occurred simultaneously in the membrane module, and only water vapor could diffuse across the membrane pore due to the water vapor pressure difference between the inside and outside of the membrane. Mathematical equations of the heat and mass transfer processes in the membrane heat exchanger were built, and the parallel flow process and the counter flow process were compared by numerical simulation. The simulation results show that the counter flow process was the better flow mode because the mean temperature difference was larger and the mass transfer was more steadily from the lumen side to the shell side. The heat caused by water vapor mass transfer may account for one-third of the total heat transfer. As a result, the membrane heat exchanger not only reinforced the heat recovery but also enlarged the deflation range and reduced the circulation rate and the heat loads of the generator and absorber. Eventually, the coefficient of performance of the heat exchanger was increased.


Sign in / Sign up

Export Citation Format

Share Document