scholarly journals Numerical Absorbing Boundary Conditions Based on a Damped Wave Equation for Pseudospectral Time-Domain Acoustic Simulations

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Spa ◽  
Pedro Reche-López ◽  
Erwin Hernández

In the context of wave-like phenomena, Fourier pseudospectral time-domain (PSTD) algorithms are some of the most efficient time-domain numerical methods for engineering applications. One important drawback of these methods is the so-called Gibbs phenomenon. This error can be avoided by using absorbing boundary conditions (ABC) at the end of the simulations. However, there is an important lack of ABC using a PSTD methods on a wave equation. In this paper, we present an ABC model based on a PSTD damped wave equation with an absorption parameter that depends on the position. Some examples of optimum variation profiles are studied analytically and numerically. Finally, the results of this model are also compared to another ABC model based on an hybrid formulation of the scalar perfectly matched layer.

2021 ◽  
Vol 8 ◽  
pp. 57-68
Author(s):  
R.Yu. Borodulin ◽  
N.O. Lukyanov

Problem statement. The accuracy and convergence of calculations for solving problems of electrodynamics by the finite difference method in the time domain significantly depends on the correct choice of parameters and the correct setting of the absorbing boundary conditions (ABC). Two main types of absorbing boundary conditions are known: Mur ABC; Beranger ABC. It is believed that the Mur ABC is less effective at absorbing spherical waves than the Beranger ABC, but they do not require the introduction of additional parameters (the so-called "Beranger fields"), which simplifies the implementation of program code and saves computer RAM. Calculations have shown that the efficiency of the Mur ABC will depend on their thickness. On the one hand, an increase in the thickness of the ABC layers will lead to an increase in the accuracy of calculations, on the other hand, to an increase in the size of the calculation area and, as a result, an increase in RAM. The problem arises of determining the criterion for evaluating the efficiency of ABC to determine their optimal thickness. Goal. Identification of new factors that make it possible to use the Mur ABC as efficiently as the Beranger ABC, while significantly saving computer resources. Result. The expressions for the ABC are presented, taking into account the interaction of all components of the electromagnetic field within a single cell of the FDTD. Calculations of the reflection coefficient – a criterion for evaluating the efficiency of the ABC, are presented. Practical significance. Calculations are presented that allow automating the selection of ABC parameters for their stable operation in solving electrodynamic problems.


Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1153-1163 ◽  
Author(s):  
R. A. Renaut ◽  
J. Petersen

Numerical solution of the two‐dimensional wave equation requires mapping from a physical domain without boundaries to a computational domain with artificial boundaries. For realistic solutions, the artificial boundaries should cause waves to pass directly through and thus mimic total absorption of energy. An artificial boundary which propagates waves in one direction only is derived from approximations to the one‐way wave equation and is commonly called an absorbing boundary. Here we investigate order 2 absorbing boundary conditions which include the standard paraxial approximation. Absorption properties are compared analytically and numerically. Our numerical results confirm that the [Formula: see text] or Chebychev‐Padé approximations are best for wide‐angle absorption and that the Chebychev or least‐squares approximations are best for uniform absorption over a wide range of incident angles. Our results also demonstrate, however, that the boundary conditions are stable for varying ranges of Courant number (ratio of time step to grid size). We prove that there is a stability barrier on the Courant number specified by the coefficients of the boundary conditions. Thus, proving stability of the interior scheme is not sufficient. Furthermore, waves may radiate spontaneously from the boundary, causing instability, even if the stability bound on the Courant number is satisfied. Consequently, the Chebychev and least‐squares conditions may be preferred for wide‐angle absorption also.


Sign in / Sign up

Export Citation Format

Share Document