scholarly journals Does Maturity Affect Cephalic Perfusion and T/QRS Ratio during Prolonged Umbilical Cord Occlusion in Fetal Sheep?

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Guido Wassink ◽  
Robert Galinsky ◽  
Paul P. Drury ◽  
Eleanor R. Gunn ◽  
Laura Bennet ◽  
...  

T/QRS ratio monitoring is used to help identify fetal asphyxia. However, immature animals have greater capacity to maintain blood pressure during severe asphyxia, raising the possibility that they may show an attenuated T/QRS increase during asphyxia. Chronically instrumented fetal sheep at 0.6 of gestation (0.6 GA;n= 12), 0.7 GA (n= 12), and 0.8 GA (n= 8) underwent complete umbilical cord occlusion for 30 min, 25 min, or 15 min, respectively. Cord occlusion was associated with progressive metabolic acidosis and initial hypertension followed by severe hypotension, with a more rapid fall in mean arterial blood pressure (MAP) and carotid blood flow (CaBF) with advancing gestation. T/QRS ratio rose after occlusion more rapidly at 0.8 GA than in immature fetuses, to a similar final peak at all ages, followed by a progressive fall that was slower at 0.8 GA than in the immature fetuses. The increase in T/QRS ratio correlated with initial hypertension at 0.8 GA (P<0.05,R2= 0.38), and conversely, its fall correlated closely with falling MAP in all gestational groups (P<0.01,R2= 0.67). In conclusion, elevation of the T/QRS ratio is an index of onset of severe asphyxia in the last third of gestation, but not of fetal compromise.

Author(s):  
Christopher A. Lear ◽  
Laura Bennet ◽  
Benjamin S. A. Lear ◽  
Jenny A. Westgate ◽  
Alistair Jan Gunn

Impaired cardiac preload secondary to umbilical cord occlusion (UCO) has been hypothesized to contribute to intrapartum decelerations, brief falls in fetal heart rate (FHR), through the activation of the Bezold-Jarisch reflex. This cardioprotective reflex increases parasympathetic and inhibits sympathetic outflows triggering hypotension, bradycardia and peripheral vasodilation but its potential to contribute to intrapartum decelerations has never been systematically examined. In this study we performed bilateral cervical vagotomy to remove the afferent arm and the efferent parasympathetic arm of the Bezold-Jarisch reflex. 22 chronically instrumented fetal sheep at 0.85 of gestation received vagotomy (n=7) or sham-vagotomy (control, n=15), followed by three 1-min complete UCOs separated by 4-min reperfusion periods. UCOs in control fetuses were associated with a rapid fall in FHR and reduced femoral blood flow mediated by intense femoral vasoconstriction, leading to hypertension. Vagotomy abolished the rapid fall in FHR (p<0.001), and despite reduced diastolic filling time, increased both carotid (p<0.001) and femoral (p<0.05) blood flow during UCOs, secondary to carotid vasodilation (p<0.01) and delayed femoral vasoconstriction (p<0.05). Finally, vagotomy was associated with an attenuated rise in cortical impedance during UCOs (p<0.05), consistent with improved cerebral substrate supply. In conclusion, increased carotid and femoral blood flows after vagotomy are consistent with increased left and right ventricular output, which is incompatible with the hypothesis that labor-like UCOs impair ventricular filling. Overall, the cardiovascular responses to vagotomy do not support the hypothesis that the Bezold-Jarisch reflex is activated by UCO. The Bezold-Jarisch reflex is therefore mechanistically unable to contribute to intrapartum decelerations.


Author(s):  
Juulia Lantto ◽  
Tiina Erkinaro ◽  
Mervi Haapsamo ◽  
Heikki Huhta ◽  
Leena Alanne ◽  
...  

A drop in arterial oxygen content activates fetal chemoreflex including an increase in sympathetic activity leading to peripheral vasoconstriction and redistribution of blood flow to protect the brain, myocardium, and adrenal glands. By using a chronically instrumented fetal sheep model with intact placental circulation at near-term gestation, we investigated the relationship between peripheral chemoreflex activation induced by hypoxemia and central hemodynamics. 17 Åland landrace sheep fetuses at 115-128/145 gestational days were instrumented. Carotid artery was catheterised in 10 fetuses and descending aorta in 7 fetuses. After a 4-day recovery, baseline measurements of fetal arterial blood pressures, blood gas values, and fetal cardiovascular hemodynamics by pulsed Doppler ultrasonography were obtained under isoflurane-anesthesia. Comparable data to baseline was collected 10 (acute hypoxemia) and 60 minutes (prolonged hypoxemia) after maternal hypo-oxygenation to saturation level of 70-80% was achieved. During prolonged hypoxemia, pH and base excess (BE) were lower, and lactate levels higher in the descending aorta than in the carotid artery. During hypoxemia mean arterial blood pressure (MAP) in the descending aorta increased, while in the carotid artery MAP decreased. In addition, right pulmonary artery pulsatility index values increased, and the diastolic component in the aortic isthmus blood flow velocity waveform became more retrograde. Both fetal ventricular cardiac outputs were maintained even during prolonged hypoxemia when significant fetal metabolic acidemia developed. Fetal chemoreflex activation induced by hypoxemia decreased the perfusion pressure in the cerebral circulation. Fetal weight-indexed LVCO or AoI Net Flow-ratio did not correlate with a drop in carotid artery blood pressure.


2003 ◽  
Vol 95 (3) ◽  
pp. 1153-1158 ◽  
Author(s):  
H. Anetzberger ◽  
E. Thein ◽  
M. Becker ◽  
A. K. Walli ◽  
K. Messmer

In this study, we compared bone blood flow values obtained by simultaneously injected fluorescent (FM) and radiolabeled microspheres (RM) at stepwise reduced arterial blood pressure. Ten anesthetized female New Zealand White rabbits received simultaneous left ventricular injections of FM and RM at 90, 70, and 50 mmHg mean arterial blood pressure (MAP). After the experiments, both kidneys and long bones of all four limbs were removed and dissected in a standardized manner. Radioactivity (corrected for decay, background, and spillover) and fluorescence were determined, and blood flow values were calculated. Relative blood flow values estimated for each bone sample by RM and FM were significantly correlated ( r = 0.98, slope = 0.99, and intercept = 0.04 for 90 mmHg; r = 0.98, slope = 0.94, and intercept = 0.09 for 70 mmHg; r = 0.98, slope = 0.96, and intercept = 0.07 for 50 mmHg). Blood flow values (ml · min-1 · 100 g-1) of right and left bone samples determined at the different arterial blood pressures were identical. During moderate hypotension (70 mmHg MAP), blood flow in all bone samples remained unchanged compared with 90 mmHg MAP, whereas a significant decrease of bone blood flow was observed at severe hypotension (50 mmHg MAP). Our results demonstrate that the FM technique is valid for measuring bone blood flow. Differences in bone blood flow during altered hemodynamic conditions can be detected reliably. In addition, changes in bone blood flow during hypotension indicate that vasomotor control mechanisms, as well as cardiac output, play a role in setting bone blood flow.


2007 ◽  
Vol 103 (4) ◽  
pp. 1311-1317 ◽  
Author(s):  
Guido Wassink ◽  
Laura Bennet ◽  
Lindsea C. Booth ◽  
Ellen C. Jensen ◽  
Bert Wibbens ◽  
...  

There is evidence that preterm fetuses have blunted chemoreflex-mediated responses to hypoxia. However, the preterm fetus has much lower aerobic requirements than at term, and so moderate hypoxia may not be sufficient to elicit maximal chemoreflex responses; there are only limited quantitative data on the ontogeny of chemoreflex and hemodynamic responses to severe asphyxia. Chronically instrumented fetal sheep at 0.6 ( n = 12), 0.7 ( n = 12), and 0.85 ( n = 8) of gestational age (GA; term = 147 days) were exposed to 30, 25, or 15 min of complete umbilical cord occlusion, respectively. At all ages, occlusion was associated with early onset of bradycardia, profoundly reduced femoral blood flow and conductance, and hypertension. The 0.6-GA fetuses showed a significantly slower and lesser fall in femoral blood flow and conductance compared with the 0.85-GA group, with a correspondingly reduced relative rise in mean arterial blood pressure. As occlusion continued, the initial adaptation was followed by loss of peripheral vasoconstriction and progressive development of hypotension in all groups. The 0.85-GA fetuses showed significantly more sustained reduction in femoral conductance but also more rapid onset of hypotension than either of the younger groups. Electroencephalographic (EEG) activity was suppressed during occlusion in all groups, but the degree of suppression was less at 0.6 GA than at term. In conclusion, the near-midgestation fetus shows attenuated initial (chemoreflex) peripheral vasomotor responses to severe asphyxia compared with more mature fetuses but more sustained hemodynamic adaptation and reduced suppression of EEG activity during continued occlusion of the umbilical cord.


1980 ◽  
Vol 239 (5) ◽  
pp. H636-H641 ◽  
Author(s):  
H. R. Winn ◽  
J. E. Welsh ◽  
R. Rubio ◽  
R. M. Berne

Brain production of adenosine and its metabolites, inosine and hypoxanthine was determined in 46 rats during sustained (5 min) reduction in mean arterial blood pressure (MABP) caused by hemorrhage. Also measured were ATP, ADP, AMP, phosphocreatine (PCr), and lactate. Brain tissue was obtained by the freeze-blowing technique. Ventilation was controlled to maintain constant arterial O2 tension, CO2 tension, and pH. When MABP was decreased from 135 + 3 (SE) mmHg to 72 +/- 2 mmHg, within the range of cerebral autoregulation, brain adenosine concentration doubled from 0.55 +/- 0.12 to 1.16 +/- 0.13 nmol/g (P < 0.015). Unlike the changes in adenosine concentrations, adenine nucleotides and PCr remained stable. Lactate varied inversely with MABP. With moderate to severe hypotension (MABP = 45 +/- 3 mmHg), adenosine levels increased almost sixfold. The increment in brain adenosine concentration within the autoregulatory range supports a role for this potent dilator of pial vessels in the regulation of cerebral blood flow.


2013 ◽  
Vol 304 (10) ◽  
pp. R799-R803 ◽  
Author(s):  
Lindsea C. Booth ◽  
Paul P. Drury ◽  
Cameron Muir ◽  
Ellen C. Jensen ◽  
Alistair J. Gunn ◽  
...  

There is increasing evidence that exposure to infection can sensitize the fetus to subsequent hypoxic injury. However, it is unclear whether this involves compromise of the fetal cardiovascular adaptation to acute asphyxia. Chronically instrumented 103-day-old (0.7 gestational age, term is 147 days) fetal sheep in utero were randomized to receive either gram-negative lipopolysaccharide (LPS) as a continuous low-dose infusion for 120 h plus boluses of 1 μg LPS at 48, 72, and 96 h with asphyxia at 102 h (i.e., 6 h after the final LPS bolus) induced by umbilical cord occlusion for 15 min (LPS treated, n = 8), or the same volume of saline plus occlusion (saline treated, n = 7). Fetuses were killed 5 days after occlusion. LPS was associated with a more rapid fall in fetal heart rate at the onset of occlusion ( P < 0.05) and with minimally lower values during occlusion ( P < 0.05). The LPS-treated fetuses had lower fetal mean arterial blood pressure (BP) and greater carotid artery blood flow (CaBF) before occlusion ( P < 0.05) but showed an increase in BP and fall in CaBF to similar values as saline controls during occlusion. There were no differences between the groups in femoral blood flow before or during occlusion. Contrary to our initial hypothesis, acute on chronic exposure to LPS was associated with more rapid cardiovascular adaptation to umbilical cord occlusion.


1989 ◽  
Vol 256 (5) ◽  
pp. R1063-R1068
Author(s):  
M. Espinoza ◽  
R. Riquelme ◽  
A. M. Germain ◽  
J. Tevah ◽  
J. T. Parer ◽  
...  

Intravenous administration of the opioid receptor antagonist naloxone to asphyxiated fetal sheep increases the arterial blood pressure. We examined the hypothesis that endogenous opioids modify the cardiac output distribution during asphyxia due to changes in the vascular resistance of some fetal organs. Thirteen fetal sheep (0.8-0.9 of gestation) were chronically catheterized. Fetal asphyxia was induced by reducing the uterine blood flow with an inflatable occluder around the common internal iliac artery to approximately 50% of control for 40 min. Naloxone solution or the solvent alone was added for the last 20 min. Asphyxia caused hypertension, and the fetal arterial blood pressure further increased when asphyxiated fetuses received naloxone. Heart, brain, and adrenal blood flows increased due to the increase in blood pressure, with no changes in their vascular resistances. In contrast, kidney and carcass blood flows decreased, and their vascular resistances increased. We conclude that endogenous opioids inhibit the vasoconstriction of these vascular beds during fetal asphyxia.


2005 ◽  
Vol 99 (4) ◽  
pp. 1477-1482 ◽  
Author(s):  
Laura Bennet ◽  
Jenny A. Westgate ◽  
Yung-Chi (“Jack”) Liu ◽  
Guido Wassink ◽  
Alistair J. Gunn

This study examined the hypothesis that repeated episodes of brief but severe hypoxia would not attenuate the chemoreflex-mediated rapid initial fall in fetal heart rate (FHR) and, further, that greater hypoxic stress, as shown by hypotension and metabolic acidosis, would be associated with an enhanced chemoreflex response. Chronically instrumented, near-term fetal sheep received 1 min total umbilical cord occlusion either every 5 min for 4 h (1:5 group; n = 8) or every 2.5 min (1:2.5 group; n = 8) until mean arterial blood pressure fell to <20 mmHg on two successive occlusions. Umbilical cord occlusion caused variable decelerations, with sustained hypertension in the 1:5 group and little change in acid-base status (pH 7.34 ± 0.03 after 4 h). In contrast, the 1:2.5 group showed progressive hypotension and metabolic acidemia (pH 6.92 ± 0.04 after the last occlusion). The 1:2.5 group showed a significant increase in the rate of initial fall in FHR during the occlusion series, which was greater than the 1:5 group in the last 30 min of the occlusion series (9.4 ± 1.4 vs. 3.5 ± 0.3 beats·min−1·s−1; P < 0.01), with a greater fall in FHR (71.9 ± 6.5 vs. 47.0 ± 8.7 beats/min; P < 0.05). In summary, this study demonstrated that repetitive laborlike cord occlusions, which led to severe fetal compromise, were associated with an increase in the slope and magnitude of the initial FHR deceleration. These findings support the concept of the chemoreflex as a central, robust component of fetal adaptation to severe hypoxia.


1991 ◽  
Vol 261 (4) ◽  
pp. H1268-H1274 ◽  
Author(s):  
H. S. Iwamoto ◽  
E. Stucky ◽  
C. M. Roman

To define responses of immature fetuses to asphyxia, we occluded the umbilical cord of 11 chronically instrumented fetal sheep at 82-94 days gestation and measured hemodynamic and catecholamine responses. The fetuses became acidemic, hypoxemic, and hypercarbic: arterial pH and PO2 decreased from 7.36 +/- 0.04 and 22 +/- 3 Torr to 7.10 +/- 0.04 (mean +/- SD, P less than 0.01) and 15 +/- 4 Torr (P less than 0.01), respectively, and PCO2 increased from 56 +/- 5 to 86 +/- 8 Torr (P less than 0.01) when umbilical blood flow was reduced by 75-88%. This degree of reduction in umbilical blood flow decreased cardiac output from 606 +/- 101 to 247 +/- 67 ml.min-1.kg-1 (P less than 0.01) and blood flow to hepatic, renal, musculoskeletal, and pulmonary vascular beds. Plasma norepinephrine concentrations increased from 1,557 +/- 975 to 16,718 +/- 14,672 pg/ml (P less than 0.05) with a 75-88% reduction, but mean arterial blood pressure did not increase. The absence of a hypertensive response probably relates to the decrease in cardiac output. These data indicate that asphyxia severely compromises cardiac output and organ perfusion in the midgestation fetus.


2014 ◽  
Vol 306 (11) ◽  
pp. R787-R795 ◽  
Author(s):  
Robert Galinsky ◽  
Ellen C. Jensen ◽  
Laura Bennet ◽  
Clinton J. Mitchell ◽  
Eleanor R. Gunn ◽  
...  

Sympathetic nervous system (SNS)-mediated peripheral vasoconstriction plays a key role in initial maintenance of blood pressure during rapid-onset asphyxia in the mammalian fetus, but it is attenuated after the first few minutes. It is unclear whether the SNS response is sustained during the brief, but frequently repeated, episodes of asphyxia characteristic of labor. In the present study, 14 fetal sheep at 0.85 of gestation received either chemical sympathectomy with 6-hydroxydopamine (6-OHDA; n = 7) or sham injection (control; n = 7), followed 4–5 days later by repeated 2-min episodes of complete umbilical cord occlusion every 5 min for up to 4 h or until mean arterial blood pressure (MAP) fell to <20 mmHg for two successive occlusions. In controls, umbilical cord occlusions were associated with a rapid initial fall in fetal heart rate (FHR) and femoral blood flow (FBF), with initial hypertension, followed by progressive development of hypotension during ongoing occlusions. Sympathectomy was associated with attenuation of the initial rise in MAP during umbilical cord occlusion, and after the onset of hypotension, a markedly more rapid fall of MAP to the nadir, with a correspondingly slower fall in FBF ( P < 0.05). In contrast, MAP and FHR between successive occlusions were higher after sympathectomy ( P < 0.05). There was no significant difference in the number of occlusions before terminal hypotension (6-OHDA; 16.1 ± 2.2 vs. control; 18.7 ± 2.3). These data show that SNS activity provides ongoing support for fetal MAP during prolonged exposure to brief repeated asphyxia.


Sign in / Sign up

Export Citation Format

Share Document