scholarly journals Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Huangsheng Xie ◽  
Guodong Li ◽  
Yuexin Wang ◽  
Zhihe Fu ◽  
Fengyu Zhou

This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response) Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

Author(s):  
Nurul Fatina Yusni ◽  
Nur Farah Hanani Mohd Zaim ◽  
Siti Khairul Niza Sukri ◽  
Noreha Che Sidik ◽  
Shamsul Jamel Elias ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1358
Author(s):  
Taihui Wu ◽  
Jianshe Ma ◽  
Chengchen Wang ◽  
Haibei Wang ◽  
Liangcai Cao ◽  
...  

An optical encryption method based on computer generated holograms printing of photopolymer is presented. Fraunhofer diffraction is performed based on the Gerchberg-Saxton algorithm, and a hologram of the Advanced Encryption Standard encrypted Quick Response code is generated to record the ciphertext. The holograms of the key and the three-dimensional image are generated by the angular spectrum diffraction algorithm. The experimental results show that large-size encrypted Quick Response (QR) code and miniature keys can be printed in photopolymers, which has good application prospects in optical encryption. This method has the advantages of high-density storage, high speed, large fault tolerance, and anti-peeping.


Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


Author(s):  
S. Kaizerman ◽  
B. Benhabib ◽  
R. G. Fenton ◽  
G. Zak

Abstract A new robot kinematic calibration procedure is presented. The parameters of the kinematic model are estimated through a relationship established between the deviations in the joint variables and the deviations in the model parameters. Thus, the new method can be classified as an inverse calibration procedure. Using suitable sensitivity analysis methods, the matrix of the partial derivatives of joint variables with respect to robot parameters is calculated without having explicit expressions of joint variables as a function of task space coordinates (closed inverse kinematic solution). This matrix provides the relationship between the changes in the joint variables and the changes in the parameter values required for the calibration. Two deterministic sensitivity analysis methods are applied, namely the Direct Sensitivity Approach and the Adjoint Sensitivity Method. The new calibration procedure was successfully tested by the simulated calibrations of a two degree of freedom revolute-joint planar manipulator.


Sign in / Sign up

Export Citation Format

Share Document