scholarly journals Global Particle Swarm Optimization for High Dimension Numerical Functions Analysis

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
J. J. Jamian ◽  
M. N. Abdullah ◽  
H. Mokhlis ◽  
M. W. Mustafa ◽  
A. H. A. Bakar

The Particle Swarm Optimization (PSO) Algorithm is a popular optimization method that is widely used in various applications, due to its simplicity and capability in obtaining optimal results. However, ordinary PSOs may be trapped in the local optimal point, especially in high dimensional problems. To overcome this problem, an efficient Global Particle Swarm Optimization (GPSO) algorithm is proposed in this paper, based on a new updated strategy of the particle position. This is done through sharing information of particle position between the dimensions (variables) at any iteration. The strategy can enhance the exploration capability of the GPSO algorithm to determine the optimum global solution and avoid traps at the local optimum. The proposed GPSO algorithm is validated on a 12-benchmark mathematical function and compared with three different types of PSO techniques. The performance of this algorithm is measured based on the solutions’ quality, convergence characteristics, and their robustness after 50 trials. The simulation results showed that the new updated strategy in GPSO assists in realizing a better optimum solution with the smallest standard deviation value compared to other techniques. It can be concluded that the proposed GPSO method is a superior technique for solving high dimensional numerical function optimization problems.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 922 ◽  
Author(s):  
Yuji Du ◽  
Fanfan Xu

As a meta-heuristic algoriTthm, particle swarm optimization (PSO) has the advantages of having a simple principle, few required parameters, easy realization and strong adaptability. However, it is easy to fall into a local optimum in the early stage of iteration. Aiming at this shortcoming, this paper presents a hybrid multi-step probability selection particle swarm optimization with sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients (MPSPSO-ST), which can strengthen the overall performance of PSO to a large extent. Firstly, we propose a hybrid multi-step probability selection update mechanism (MPSPSO), which skillfully uses a multi-step process and roulette wheel selection to improve the performance. In order to achieve a good balance between global search capability and local search capability to further enhance the performance of the method, we also design sine chaotic inertial weight and symmetric tangent chaotic acceleration coefficients inspired by chaos mechanism and trigonometric functions, which are integrated into the MPSPSO-ST algorithm. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. To evaluate the effectiveness of the MPSPSO-ST algorithm, we conducted extensive experiments with 20 classic benchmark functions. The experimental results show that the MPSPSO-ST algorithm has faster convergence speed, higher optimization accuracy and better robustness, which is competitive in solving numerical optimization problems and outperforms a lot of classical PSO variants and well-known optimization algorithms.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 876 ◽  
Author(s):  
Ma ◽  
Yuan ◽  
Han ◽  
Sun ◽  
Ma

As a global-optimized and naturally inspired algorithm, particle swarm optimization (PSO) is characterized by its high quality and easy application in practical optimization problems. However, PSO has some obvious drawbacks, such as early convergence and slow convergence speed. Therefore, we introduced some appropriate improvements to PSO and proposed a novel chaotic PSO variant with arctangent acceleration coefficient (CPSO-AT). A total of 10 numerical optimization functions were employed to test the performance of the proposed CPSO-AT algorithm. Extensive contrast experiments were conducted to verify the effectiveness of the proposed methodology. The experimental results showed that the proposed CPSO-AT algorithm converges quickly and has better stability in numerical optimization problems compared with other PSO variants and other kinds of well-known optimal algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


Author(s):  
Mohammad Khajehzadeh ◽  
Alireza Sobhani ◽  
Seyed Mehdi Seyed Alizadeh ◽  
Mahdiyeh Eslami

This study introduces an effective hybrid optimization algorithm, namely Particle Swarm Sine Cosine Algorithm (PSSCA) for numerical function optimization and automating optimum design of retaining structures under seismic loads. The new algorithm employs the dynamic behavior of sine and cosine functions in the velocity updating operation of particle swarm optimization (PSO) to achieve faster convergence and better accuracy of final solution without getting trapped in local minima. The proposed algorithm is tested over a set of 16 benchmark functions and the results are compared with other well-known algorithms in the field of optimization. For seismic optimization of retaining structure, Mononobe-Okabe method is employed for dynamic loading condition and total construction cost of the structure is considered as the objective function. Finally, optimization of two retaining structures under static and seismic loading are considered from the literature. As results demonstrate, the PSSCA is superior and it could generate better optimal solutions compared with other competitive algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants.


Sign in / Sign up

Export Citation Format

Share Document