scholarly journals First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

2014 ◽  
Vol 6 ◽  
pp. 359872 ◽  
Author(s):  
M. M. Rashidi ◽  
A. Hajipour ◽  
A. Mousapour ◽  
M. Ali ◽  
Gongnan Xie ◽  
...  
Author(s):  
Houcheng Zhang ◽  
Lanmei Wu ◽  
Guoxing Lin

A class of solar-driven heat engines is modeled as a combined system consisting of a solar collector and a unified heat engine, in which muti-irreversibilities including not only the finite rate heat transfer and the internal irreversibility, but also radiation-convection heat loss from the solar collector to the ambience are taken into account. The maximum overall efficiency of the system, the optimal operating temperature of the solar collector, the optimal temperatures of the working fluid and the optimal ratio of heat transfer areas are calculated by using numerical calculation method. The influences of radiation-convection heat loss of the collector and internal irreversibility on the cyclic performances of the solar-driven heat engine system are revealed. The results obtained in the present paper are more general than those in literature and the performance characteristics of several solar-driven heat engines such as Carnot, Brayton, Braysson and so on can be directly derived from them.


2012 ◽  
Vol 36 (3) ◽  
pp. 348-353 ◽  
Author(s):  
Carlos Eduardo Silva Volpato ◽  
Alexon do Prado Conde ◽  
Jackson Antonio Barbosa ◽  
Nilson Salvador

Biodiesel is a renewable fuel derived from vegetable oils used in diesel engines, in any proportion with petroleum diesel, or pure. It is produced by chemical processes, usually by transesterification, in which the glycerin is removed. The objective of this study was to compare the performance of a four stroke, four cylinder diesel cycle engines using either olive (B100) biodiesel oil or diesel oil. The following parameters were analyzed: effective and reduced power, torque, specific and hourly fuel consumption, thermo-mechanical and volumetric efficiency. Analysis of variance was performed on a completely randomized design with treatments in factorial and the Tukey test applied at the level of 5%. Five rotation speeds were researched in four replications (650, 570, 490, 410, 320 and 240 rpm). The engine fed with biodiesel presented more satisfactory results for torque, reduced power and specific and hourly consumptions than that fed with fossil diesel.


2019 ◽  
Vol 44 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Roshan Raman ◽  
Naveen Kumar

Abstract A novel realistic Work Criteria Function (WCF) approach has been used to analyze the ideal air-standard Diesel cycle. The WCF formulation gives rise to a new performance criterion which is termed as efficient power density (EPD). Thermodynamic analysis under maximum efficient power density (MEPD) conditions has been performed and compared with other available performance criteria using variable specific heats of the working fluid. The results obtained from this analysis prove that the engine designed under MEPD conditions is very efficient and the size of the engine is reduced significantly compared to those designed under maximum efficient power (MEP), maximum power density (MPD), and maximum power (MP) criteria. Harmful emissions like {\mathrm{NO}_{\mathrm{x}}} may decrease considerably at higher values of the maximum cycle temperature ratio (ξ). The effect of variable specific heats of operational fluid on the actual cycle’s performance has a significant impact on engine performance and should be incorporated when evaluating practical cycle engines. The results obtained in the current study have scientific importance and could be an essential guide for the design of real Diesel engines by engine manufacturers.


Sign in / Sign up

Export Citation Format

Share Document