scholarly journals Meticulous Overview on the Controlled Release Fertilizers

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Siafu Ibahati Sempeho ◽  
Hee Taik Kim ◽  
Egid Mubofu ◽  
Askwar Hilonga

Owing to the high demand for fertilizer formulations that will exhaust the possibilities of nutrient use efficiency (NUE), regulate fertilizer consumption, and lessen agrophysicochemical properties and environmental adverse effects instigated by conventional nutrient supply to crops, this review recapitulates controlled release fertilizers (CRFs) as a cutting-edge and safe way to supply crops’ nutrients over the conventional ways. Essentially, CRFs entail fertilizer particles intercalated within excipients aiming at reducing the frequency of fertilizer application thereby abating potential adverse effects linked with conventional fertilizer use. Application of nanotechnology and materials engineering in agriculture particularly in the design of CRFs, the distinctions and classification of CRFs, and the economical, agronomical, and environmental aspects of CRFs has been revised putting into account the development and synthesis of CRFs, laboratory CRFs syntheses and testing, and both linear and sigmoid release features of CRF formulations. Methodical account on the mechanism of nutrient release centring on the empirical and mechanistic approaches of predicting nutrient release is given in view of selected mathematical models. Compositions and laboratory preparations of CRFs basing on in situ and graft polymerization are provided alongside the physical methods used in CRFs encapsulation, with an emphasis on the natural polymers, modified clays, and superabsorbent nanocomposite excipients.

2020 ◽  
Author(s):  
A. Karthik ◽  
M. Uma Maheswari

Food security is one of the major concerns for all developing countries of the world. Even though we had attained the highest food production with the use of new technologies, we may not able to feed the burgeoning population adequately in coming years due to stagnant crop productivity. Natural source of nutrients like organic manures and external source of nutrients, viz. fertilizers, are considered as the two eyes in plant nutrient management. Nutrient use efficiency of fertilizer is very low due to numerous pathways of losses such as leaching, denitrification, microbial immobilization, fixation and runoff. It has been estimated that around 40-70% of nitrogen, 80-90% of phosphorus, 50-70% of potassium and more than 95% of micronutrient content of applied fertilizers are lost in to the environment and results in pollution (Kanjana, 2017). Smart fertilizers like slow and controlled release fertilizers, nanofertilizers and bioformulation fertilizers are the new technologies to enhance the nutrient use efficiency their by improving crop yield in sustainable manner. The use of slow and controlled release fertilizers increase nutrient use efficiency, minimize the risks like leaf burning, water contamination and eutrophication. Nano-fertilizers are the nano-particles-based fertilizers, where supply of the nutrients is made precisely for maximum plant growth, have higher use efficiency, exploiting plant unavailable nutrients in the rhizosphere and can be delivered on real time basis into the rhizosphere or by foliar spray (Priyanka Solangi et al., 2015). The small size, high specific surface area and reactivity of nano fertilizers increase the solubility, diffusion and availability of nutrients to plants and enhance crop productivity. Bioformulation is microbial preparations containing specific beneficial microorganisms which are capable of fixing or solubilizing or mobilizing plant nutrients for promoting plant growth and crop yield. Smart fertilizers are the better option for the farmers to increase their crop yield with low input cost in sustainable way without degrading natural environment.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 238
Author(s):  
Dora Lawrencia ◽  
See Kiat Wong ◽  
Darren Yi Sern Low ◽  
Bey Hing Goh ◽  
Joo Kheng Goh ◽  
...  

Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the “tailing” effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.


2021 ◽  
pp. 153-158
Author(s):  
I. Manolov ◽  
N. Shaban ◽  
S. Bistrichanov ◽  
M. Nikolova ◽  
B. Stalev ◽  
...  

Author(s):  
V. K. Singh ◽  
B. S. Dwivedi ◽  
S. S. Rathore ◽  
R. P. Mishra ◽  
T. Satyanarayana ◽  
...  

AbstractPotassium (K) demand by crops is almost as high as that of nitrogen (N) and plays a crucial role in many plant metabolic processes. Insufficient K application results in soil K mining, deficiency symptoms in crops, and decreased crop yields and quality. Crop K demands vary with crop types, growth patterns, nutrient needs at different physiological stages, and productivity. Science-based K application in crops needs to follow 4R Nutrient Stewardship to ensure high yield, improved farm income, and optimum nutrient use efficiency. Studies around the world report widespread K deficiency, ranging from tropical to temperate environments. Long-term experiments indicate significant yield responses to K application and negative K balances where K application is either omitted or applied suboptimally. Limited understanding of K supplementation dynamics from soil non-exchangeable K pools to the exchangeable and solution phases and over-reliance on native K supply to meet crop demand are major reasons for deficit of K supply to crops. Research on optimum timing of K fertilizer application in diverse climate–soil–crop systems is scarce. The common one-time basal K management practice is often not suitable to supply adequate K to the crops during peak demand phases. Besides, changes in crop establishment practices, residue retention, or fertigation require new research in terms of rate, time, or source of K application. The current review assesses the synchrony of K supply from indigenous soil system and from external sources vis-à-vis plant demand under different crops and cropping systems for achieving high yield and nutrient use efficiency.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 207
Author(s):  
Meijuan Wen ◽  
Sicun Yang ◽  
Lin Huo ◽  
Ping He ◽  
Xinpeng Xu ◽  
...  

Imbalanced and excessive fertilizer application has resulted in low yields and reduced nutrient use efficiency for melon production in China. Estimating nutrient requirements is crucial for effectively developing site-specific fertilizer recommendations for increasing yield and profit while reducing negative environmental impacts. Relationships between the yield and nutrient uptake requirements of above-ground dry matter were assessed using 1127 on-farm observations (2000–2020) from melon production regions of China. The quantitative evaluation of fertility of tropical soils (QUEFTS) model was used to estimate nutrient requirements. It predicted a linear increase in yield at balanced nutrient uptake levels until the yield reached approximately 60–80% of the potential yield. In order to produce 1000 kg of fruit, 2.9, 0.4 and 3.2 kg/ha of N, P and K (7.2:1.0:7.8), respectively, were required for above-ground parts, while the corresponding nutrient internal efficiencies were 345.3, 2612.6 and 310.0 kg per kg N, P and K, respectively, whereas 1.4, 0.2 and 1.9 kg of N, P and K were required to replace nutrients removed after harvest. The corresponding fruit absorption rates were 47.0%, 59.5% and 58.2%, respectively. Field validation experiments confirmed the consistency between observed and simulated uptake rates, indicating that this model could estimate nutrient requirements. These findings will help develop fertilizer recommendations for improving melon yield and nutrient use efficiency.


Author(s):  
M Malla ◽  
G Tesema ◽  
S Tesema ◽  
A Hegano ◽  
S Negash

Depletion of soil fertility, depletion of macro- and micro-nutrients and soil organic matter and inappropriate and imbalanced fertilizer application are among the most important factors that reduces the food barley production in Ethiopia. Therefore, the experiment was conducted to evaluate NPSB blended fertilizer rate effect on improving production of food barley in Semen Ari District, Southwestern Ethiopia during main cropping season. Control, (142 NPS + 159 Urea) kg ha-1, (150 NPSB + 41 Urea) kg ha-1, (200 NPSB + 72 Urea) kg ha-1, (250 NPSB + 102 Urea) kg ha-1 and (100 NPSB + 161 Urea) kg ha-1 treatments were used for the experiment which laid out in RCBD following three replication with spacing of 20 cm between rows; and HB 1307 improved food barley seeds were drilled on prepared rows. Full dose of blended and potassium fertilizers were applied at planting time and urea was applied in two split. The result revealed that food barley responded well to application of N, P, S and B than the unfertilized one. Application of 100 kg ha-1 NPSB + 161 kg ha-1 Urea resulted in highest grain yield of 3806.3 kg ha-1, while the lowest grain yield of 1939.2 kg ha-1 was recorded from the nil. Moreover, the highest net benefit of 32124.56 ETB ha-1 and economic returns of 942.2% was recorded in response to application of 100 kg ha-1 NPSB + 161 kg ha-1 Urea. Application of 100 kg ha-1 NPSB + 161 kg ha-1 Urea gave 49.05% yield increment and 40.24% increment in economic return over the control. Therefore, we recommend application of 100 kg ha-1 NPSB + 161 kg ha-1 Urea for farmers and investor’s in study area and similar agro-ecologies as it was optimum for improving food barley production. Further studies and investigation should be done on plant nutrient uptake, nutrient use efficiency and over location. Int. J. Agril. Res. Innov. Tech. 11(2): 10-17, Dec 2021


Author(s):  
V. Mini ◽  
G. Suja

Background: Development of fortified organic formulations using various organic sources and fertilizers for soil application will ensure efficient nutrient management in homestead vegetable production systems. Fortified organic formulations will help in preventing nutrient leaching also. Hence, the present study has been undertaken during 2019-20 to develop low cost fortified organic manure discs using various biodegradable agro waste materials and NPK fertilizers and to study its effect on growth and yield of tomato in sandy soils of Kerala. Methods: A fortified manure disc was developed by combining local biodegradable agro waste materials with conventional NPK fertilizers. Organic manures like rice husk ash, cow dung, rice husk, coirpith compost, vermicompost, neem cake and clay were used to develop the manure disc. The combination of organic manures was fortified with fertilizers at various proportions of manure: fertilizer viz., 1:1, 2:1, 0.5:1 and manure alone and used for incubation for a period of two months to study the nutrient release pattern of N, P and K.The 2:1(manure: fertilizer) formulation was selected based on the highest peak of nutrient availability of N, P and K even after 2 months. Effect of fortified manure disc was evaluated by using tomato variety Anagha as test crop in a pot culture experiment. Result: Growth, yield and quality of tomato increased significantly due to the application of fortified manure disc. The highest yield per plant of 0.97 kg was recorded for T8 (50% recommended dose fortified manure disc in 2 splits) and lowest yield was recorded for T9 (Manure alone). The fortified manure disc had a significant influence on nutrient use efficiency also. The highest NUE of 45.5% was recorded in treatment T8 (50% fertilizer fortified discs in 2 splits). Study revealed that fortified manure disc is a promising technology to reduce nutrient leaching and enhancing the nutrient use efficiency in sandy soils. Fifty percentage reduction in the recommended dose of NPK fertilizers were achieved by fortifying the manure disc with fertilizers.Thus the cost of fertilizers and fertilizer load per unit area can be reduced by the application of fortified manure disc which will act as slow release fertilizer.


2018 ◽  
pp. 185-190
Author(s):  
I. Manolov ◽  
A. Yordanov ◽  
M. Apostolova ◽  
M. Nikolova ◽  
B. Stalev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document