scholarly journals Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hyungki Kim ◽  
Yuna Kang ◽  
Soonhung Han

Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model.

Author(s):  
Q. Yao ◽  
B. Tan ◽  
Y. Huang

Traffic sign provides road users with the specified instruction and information to enhance traffic safety. Automatic detection of traffic sign is important for navigation, autonomous driving, transportation asset management, etc. With the advance of laser and imaging sensors, Mobile Mapping System (MMS) becomes widely used in transportation agencies to map the transportation infrastructure. Although many algorithms of traffic sign detection are developed in the literature, they are still a tradeoff between the detection speed and accuracy, especially for the large-scale mobile mapping of both the rural and urban roads. This paper is motivated to efficiently survey traffic signs while mapping the road network and the roadside landscape. Inspired by the manual delineation of traffic sign, a drawing strategy is proposed to quickly approximate the boundary of traffic sign. Both the shape and color prior of the traffic sign are simultaneously involved during the drawing process. The most common speed-limit sign circle and the statistic color model of traffic sign are studied in this paper. Anchor points of traffic sign edge are located with the local maxima of color and gradient difference. Starting with the anchor points, contour of traffic sign is drawn smartly along the most significant direction of color and intensity consistency. The drawing process is also constrained by the curvature feature of the traffic sign circle. The drawing of linear growth is discarded immediately if it fails to form an arc over some steps. The Kalman filter principle is adopted to predict the temporal context of traffic sign. Based on the estimated point,we can predict and double check the traffic sign in consecutive frames.The event probability of having a traffic sign over the consecutive observations is compared with the null hypothesis of no perceptible traffic sign. The temporally salient traffic sign is then detected statistically and automatically as the rare event of having a traffic sign.The proposed algorithm is tested with a diverse set of images that are taken inWuhan, China with theMMS ofWuhan University. Experimental results demonstrate that the proposed algorithm can detect traffic signs at the rate of over 80% in around 10 milliseconds. It is promising for the large-scale traffic sign survey and change detection using the mobile mapping system.


Author(s):  
Q. Yao ◽  
B. Tan ◽  
Y. Huang

Traffic sign provides road users with the specified instruction and information to enhance traffic safety. Automatic detection of traffic sign is important for navigation, autonomous driving, transportation asset management, etc. With the advance of laser and imaging sensors, Mobile Mapping System (MMS) becomes widely used in transportation agencies to map the transportation infrastructure. Although many algorithms of traffic sign detection are developed in the literature, they are still a tradeoff between the detection speed and accuracy, especially for the large-scale mobile mapping of both the rural and urban roads. This paper is motivated to efficiently survey traffic signs while mapping the road network and the roadside landscape. Inspired by the manual delineation of traffic sign, a drawing strategy is proposed to quickly approximate the boundary of traffic sign. Both the shape and color prior of the traffic sign are simultaneously involved during the drawing process. The most common speed-limit sign circle and the statistic color model of traffic sign are studied in this paper. Anchor points of traffic sign edge are located with the local maxima of color and gradient difference. Starting with the anchor points, contour of traffic sign is drawn smartly along the most significant direction of color and intensity consistency. The drawing process is also constrained by the curvature feature of the traffic sign circle. The drawing of linear growth is discarded immediately if it fails to form an arc over some steps. The Kalman filter principle is adopted to predict the temporal context of traffic sign. Based on the estimated point,we can predict and double check the traffic sign in consecutive frames.The event probability of having a traffic sign over the consecutive observations is compared with the null hypothesis of no perceptible traffic sign. The temporally salient traffic sign is then detected statistically and automatically as the rare event of having a traffic sign.The proposed algorithm is tested with a diverse set of images that are taken inWuhan, China with theMMS ofWuhan University. Experimental results demonstrate that the proposed algorithm can detect traffic signs at the rate of over 80% in around 10 milliseconds. It is promising for the large-scale traffic sign survey and change detection using the mobile mapping system.


Author(s):  
M. Boussaha ◽  
B. Vallet ◽  
P. Rives

The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.


Author(s):  
J. A. Gonçalves ◽  
A. Pinhal

<p><strong>Abstract.</strong> Action cameras can operate in outdoor conditions, such as outside a car, and provide good quality imagery that can be exploited to collect geospatial data by photogrammetric means. Recent models include GPS, which can deliver position and time of individual images and video frames. That is the case of the very popular camera, Gopro Hero 5. This paper describes the implementation of a mobile mapping system, based on a GoPro Hero 5 camera mounted on the side rearview mirror of a car. Although the system can be dependent on the camera GPS positions only, it was developed to include a GNSS dual frequency receiver, carried inside the car, on the dashboard. Within good observation conditions, without tall buildings, differential positioning (either RTK or PPK) provides the trajectory with accuracy of a few centimetres. The precise time of individual frames is obtained from the camera GPS and positions are interpolated from the GNSS receiver. Assuming the car moves in a horizontal plane and the camera has no significant tilts, the system is treated in planimetric terms, with camera axis azimuth derived from the vehicle trajectory. Positions of observed objects, such as traffic signs, are derived from consecutive frames. Tests carried out in a sparse urban environment have shown planimetric accuracy better than 40<span class="thinspace"></span>cm, appropriate for large scale mapping, such as 1<span class="thinspace"></span>:<span class="thinspace"></span>2000. The system can be improved in several forms, through processing techniques, such as structure from motion, but without the incorporation of additional hardware.</p>


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2595
Author(s):  
Balakrishnan Ramalingam ◽  
Abdullah Aamir Hayat ◽  
Mohan Rajesh Elara ◽  
Braulio Félix Gómez ◽  
Lim Yi ◽  
...  

The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks.


Author(s):  
Kiichiro Ishikawa ◽  
Jun-ichi Takiguchi ◽  
Yoshiharu Amano ◽  
Takumi Hashizume

Sign in / Sign up

Export Citation Format

Share Document