scholarly journals Relative Displacement Method for Track-Structure Interaction

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Frank Schanack ◽  
Óscar Ramón Ramos ◽  
Juan Patricio Reyes ◽  
Marcos J. Pantaleón

The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard’s specifications.

2012 ◽  
Vol 256-259 ◽  
pp. 2844-2848
Author(s):  
Nan Li ◽  
Bao Wei Song ◽  
Kai Wei

At present, the torpedo shell analysis includes fluid analysis and structural analysis. The fluid pressure distribution of torpedo surface is the results of the fluid analysis, and it is the outer load input of torpedo shell analysis. Meanwhile the results of torpedo shell structure analysis also play a important role in binding. So torpedo shell structure analysis is a fluid-structure interaction analysis. With the development of engineering analysis software, Fluid analysis software Fluent and structural analysis software ANSYS are able to analyze torpedo fluid and structural. But there has not been a specialized software to handle fluid-structure interaction analysis. This paper coupled Fluent and ANSYS, and got an analysis method for torpedo shell fluid-structure interaction analysis base on Fluent and ANSYS


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092724
Author(s):  
Wuji Guo ◽  
Zhiping Zeng ◽  
Shiye Li ◽  
Weidong Wang ◽  
Abdulmumin Ahmed Shuaibu ◽  
...  

In this paper, a full-scale model of Low Vibration Track was established and three working conditions were applied to a single bearing block; these include: vertical load at the end of the track slab, combination of horizontal and vertical load at the end of the track slab, and vertical load at the middle of the track slab. By applying four times static wheel load to the full-scale model, the relationship between the stress of the track structure and the load under different working conditions was investigated. The corresponding load values were obtained when the track slab and the bearing block reached the axial tensile strength of the concrete. Through the static load test, the weak position of the track structure was found, and the development trend of the crack was obtained. (1) Obtained the maximum stress of the concrete of the track slab at the corner of the bearing block, the maximal stress of the concrete of the track slab, the stress at the bottom of the bearing block, and the stress at the bottom of the bearing block under different working conditions. (2) The horizontal load of the train increased the force of the track slab concrete at the corners of the bearing block. (3) Compared the strain of different location of the track slab and different working conditions. (4) Observed the positions of slight crack and its development trend appeared on track slabs in different working conditions. (5) For the weak part of the track structure, it can be improved by measures such as increasing the thickness of the end of the track slab and arranging stirrups in the track slab around the support block. The research results provide reference for the design, application and maintenance of Low Vibration Track in the heavy-haul railway tunnel.


2018 ◽  
Vol 203 ◽  
pp. 06016 ◽  
Author(s):  
Ameen Topa ◽  
Do Kyun Kim ◽  
Youngtae Kim

Seamless pipes are produced using piercing rolling process in which round bars are fed between two rolls and pierced by stationary plug. During this process, the material undergoes severe deformation which renders it impractical to perform the numerical simulations with conventional finite element methods. In this paper, three dimensional numerical simulations of the piercing process are performed with Fluid-Structure Interaction (FSI) Method using Arbitrary Lagrangian-Eulerian (ALE) Formulation with LS DYNA software. The results of numerical simulations agree with experimental data of Plasticine workpiece and the validity of the analysis method is confirmed.


2012 ◽  
Vol 06 (01) ◽  
pp. 1250003
Author(s):  
V. JAYA ◽  
G. R. DODAGOUDAR ◽  
A. BOOMINATHAN

In this paper, the seismic response analysis of deeply embedded ventilation stack is addressed by considering the effects of soil–foundation–structure interaction (SFSI). Seismic SFSI analysis of the stack subjected to a site-specific design ground motion is carried out using finite element method. A parametric sensitivity analysis is made to investigate the effect of embedment and shear wave velocity ratio of the subsurface profile on the seismic response of the stack. The first series of the SFSI analysis is carried out for the stack with surface footing using computer program SASSI 2000. The second set of analysis incorporates the effect of embedment on the seismic response of the stack. The flexible volume substructure method is used to analyze the seismic SFSI effects. It has been found that the seismic response at the various levels of the stack shows a strong dependence on stiffness of the subsurface profile and the depth of embedment. The spectral acceleration and relative displacement at the top of the stack decrease with increase in embedment ratio and these are the important parameters to be given a due consideration during design process of the stack structures.


Sign in / Sign up

Export Citation Format

Share Document