scholarly journals Fiber Visualization with LIC Maps Using Multidirectional Anisotropic Glyph Samples

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mark Höller ◽  
Kay-M. Otto ◽  
Uwe Klose ◽  
Samuel Groeschel ◽  
Hans-H. Ehricke

Line integral convolution (LIC) is used as a texture-based technique in computer graphics for flow field visualization. In diffusion tensor imaging (DTI), LIC bridges the gap between local approaches, for example directionally encoded fractional anisotropy mapping and techniques analyzing global relationships between brain regions, such as streamline tracking. In this paper an advancement of a previously published multikernel LIC approach for high angular resolution diffusion imaging visualization is proposed: a novel sampling scheme is developed to generate anisotropic glyph samples that can be used as an input pattern to the LIC algorithm. Multicylindrical glyph samples, derived from fiber orientation distribution (FOD) functions, are used, which provide a method for anisotropic packing along integrated fiber lines controlled by a uniform random algorithm. This allows two- and three-dimensional LIC maps to be generated, depicting fiber structures with excellent contrast, even in regions of crossing and branching fibers. Furthermore, a color-coding model for the fused visualization of slices from T1 datasets together with directionally encoded LIC maps is proposed. The methodology is evaluated by a simulation study with a synthetic dataset, representing crossing and bending fibers. In addition, results fromin vivostudies with a healthy volunteer and a brain tumor patient are presented to demonstrate the method's practicality.

2015 ◽  
Author(s):  
Patrick Beukema ◽  
Timothy Verstynen ◽  
Fang-Cheng Yeh

Projections from the substantia nigra and striatum traverse through the pallidum on the way to their targets. To date, in vivo characterization of these pathways remains elusive. Here we used high angular resolution diffusion imaging (N=138) to study the characteristics and structural subcompartments of the human pallidum. Our results show that the diffusion orientation distribution at the pallidum is asymmetrically oriented in a dorsolateral direction, consistent with the orientation of underlying fiber systems. Furthermore, compared to the outer pallidal segment, the internal segment has more peaks in the orientation distribution function and stronger anisotropy in the primary fiber direction, consistent with known cellular differences between the underlying nuclei. These differences in orientation, complexity, and degree of anisotropy are sufficiently robust to automatically segment the pallidal nuclei using diffusion properties. Thus the gray matter diffusion signal can be useful as an in vivo measure of the collective nigrostriatal and striatonigral pathways.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Demian Wassermann ◽  
Maxime Descoteaux ◽  
Rachid Deriche

White matter fiber clustering aims to get insight about anatomical structures in order to generate atlases, perform clear visualizations, and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a diffusion maps clustering method applied to diffusion MRI in order to segment complex white matter fiber bundles. It is well known that diffusion tensor imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent high-angular resolution diffusion imaging (HARDI) such as Q-Ball imaging (QBI) has been introduced to overcome these limitations. QBI reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber populations. In this paper, we use a spherical harmonic ODF representation as input to the diffusion maps clustering method. We first show the advantage of using diffusion maps clustering over classical methods such as N-Cuts and Laplacian eigenmaps. In particular, our ODF diffusion maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts in the segmentation, and automatically exhibits the number of clusters segmenting the Q-Ball image by using an adaptive scale-space parameter. We also show that our ODF diffusion maps clustering can reproduce published results using the diffusion tensor (DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts and exhibit wrong number of clusters. Finally, we show results on a real-brain dataset where we segment well-known fiber bundles.


2005 ◽  
Vol 360 (1457) ◽  
pp. 881-891 ◽  
Author(s):  
Muriel Perrin ◽  
Cyril Poupon ◽  
Bernard Rieul ◽  
Patrick Leroux ◽  
André Constantinesco ◽  
...  

Magnetic resonance (MR) diffusion imaging provides a valuable tool used for inferring structural anisotropy of brain white matter connectivity from diffusion tensor imaging. Recently, several high angular resolution diffusion models were introduced in order to overcome the inadequacy of the tensor model for describing fibre crossing within a single voxel. Among them, q -ball imaging (QBI), inherited from the q -space method, relies on a spherical Radon transform providing a direct relationship between the diffusion-weighted MR signal and the orientation distribution function (ODF). Experimental validation of these methods in a model system is necessary to determine the accuracy of the methods and to optimize them. A diffusion phantom made up of two textile rayon fibre (comparable in diameter to axons) bundles, crossing at 90°, was designed and dedicated to ex vivo q -ball validation on a clinical scanner. Normalized ODFs were calculated inside regions of interest corresponding to monomodal and bimodal configurations of underlying structures. Three-dimensional renderings of ODFs revealed monomodal shapes for voxels containing single-fibre population and bimodal patterns for voxels located within the crossing area. Principal orientations were estimated from ODFs and were compared with a priori structural fibre directions, validating efficiency of QBI for depicting fibre crossing. In the homogeneous regions, QBI detected the fibre angle with an accuracy of 19° and in the fibre-crossing region with an accuracy of 30°.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhanxiong Wu ◽  
Xiaohui Yu ◽  
Yang Liu ◽  
Ming Hong

High angular resolution diffusion imaging (HARDI) has opened up new perspectives for the delineation of crossing and branching fiber pathways by orientation distribution function (ODF). The fiber orientations contained in an imaging voxel are the key factor in tractography. To extract real fiber orientations from ODF, a hybrid method is proposed for computing the principal directions of ODF by combining the variation of Particle Swarm Optimization (PSO) algorithm with the modified Powell algorithm. This method is comprised of the global searching ability of PSO and the powerful local optimizing of Powell search. This combination can guarantee finding all the diffusion directions without applying sliding windows and improve the accuracy and efficiency. The proposed approach was evaluated on simulated crossing-fiber datasets, Tractometer, and in vivo datasets. The results show that this method could correctly identify fiber directions under a range of noise levels. This method was compared with the state-of-the-art methods, such as modified Powell, ball-stick model, and diffusion decomposition, showing that it outperformed them. As to the multimodal voxels where different fiber populations exist, the proposed approach allows us to improve the estimation accuracy of fiber orientations from ODF. It can play a significant role in the nerve fiber tracking.


2021 ◽  
Author(s):  
Philippe Karan ◽  
Alexis Reymbaut ◽  
Guillaume Gilbert ◽  
Maxime Descoteaux

Diffusion tensor imaging (DTI) is widely used to extract valuable tissue measurements and white matter (WM) fiber orientations, even though its lack of specificity is now well-known, especially for WM fiber crossings. Models such as constrained spherical deconvolution (CSD) take advantage of HARDI data to compute fiber orientation distribution functions (fODF) and tackle the orientational part of the DTI limitations. Furthermore, the recent introduction of tensor-valued diffusion MRI allows for diffusional variance decomposition (DIVIDE), opening the door to the computation of measures more specific to microstructure than DTI measures, such as microscopic fractional anisotropy (μFA). However, tensor-valued diffusion MRI data is not compatible with latest versions of CSD and the impacts of such atypical data on fODF reconstruction with CSD are yet to be studied. In this work, we lay down the mathematical and computational foundations of a tensor-valued CSD and use simulated data to explore the effects of various combinations of diffusion encodings on the angular resolution of extracted fOFDs. We also compare the combinations with regards to their performance at producing accurate and precise μFA with DIVIDE, and present an optimised protocol for both methods. We show that our proposed protocol enables the reconstruction of both fODFs and μFA on in vivo data.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xinfeng Yu ◽  
Xinzhen Yin ◽  
Hui Hong ◽  
Shuyue Wang ◽  
Yeerfan Jiaerken ◽  
...  

Abstract Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.


2012 ◽  
Vol 1 (1) ◽  
pp. 78-91 ◽  
Author(s):  
S Kollias

Diffusion tensor imaging (DTI) is a neuroimaging MR technique, which allows in vivo and non-destructive visualization of myeloarchitectonics in the neural tissue and provides quantitative estimates of WM integrity by measuring molecular diffusion. It is based on the phenomenon of diffusion anisotropy in the nerve tissue, in that water molecules diffuse faster along the neural fibre direction and slower in the fibre-transverse direction. On the basis of their topographic location, trajectory, and areas that interconnect the various fibre systems of the mammalian brain are divided into commissural, projectional and association fibre systems. DTI has opened an entirely new window on the white matter anatomy with both clinical and scientific applications. Its utility is found in both the localization and the quantitative assessment of specific neuronal pathways. The potential of this technique to address connectivity in the human brain is not without a few methodological limitations. A wide spectrum of diffusion imaging paradigms and computational tractography algorithms has been explored in recent years, which established DTI as promising new avenue, for the non-invasive in vivo mapping of structural connectivity at the macroscale level. Further improvements in the spatial resolution of DTI may allow this technique to be applied in the near future for mapping connectivity also at the mesoscale level. DOI: http://dx.doi.org/10.3126/njr.v1i1.6330 Nepalese Journal of Radiology Vol.1(1): 78-91


Sign in / Sign up

Export Citation Format

Share Document