scholarly journals Incremental Construction of Generalized Voronoi Diagrams on Pointerless Quadtrees

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Quanjun Yin ◽  
Long Qin ◽  
Xiaocheng Liu ◽  
Yabing Zha

In robotics, Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than210×210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Long Qin ◽  
Quanjun Yin ◽  
Yabing Zha ◽  
Yong Peng

In the context of robotics, the grid-based Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent their surrounding area. Current approaches for incrementally constructing GVDs mainly focus on providing metric skeletons of underlying grids, while the connectivity among GVD vertices and edges remains implicit, which makes high-level spatial reasoning tasks impractical. In this paper, we present an algorithm named Dynamic Topology Detector (DTD) for extracting a GVD with topological information from a grid map. Beyond the construction and reconstruction of a GVD on grids, DTD further extracts connectivity among the GVD edges and vertices. DTD also provides efficient repair mechanism to treat with local changes, making it work well in dynamic environments. Simulation tests in representative scenarios demonstrate that (1) compared with the static algorithms, DTD generally makes an order of magnitude improvement regarding computation times when working in dynamic environments; (2) with negligible extra computation, DTD detects topologies not computed by existing incremental algorithms. We also demonstrate the usefulness of the resulting topological information for high-level path planning tasks.


2020 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Pengfei Zhou ◽  
Jason Eshraghian ◽  
Chih-Yang Lin ◽  
Herbert Ho-Ching Iu ◽  
...  

<div>This paper presents the first experimental demonstration</div><div>of a ternary memristor-CMOS logic family. We systematically</div><div>design, simulate and experimentally verify the primitive</div><div>logic functions: the ternary AND, OR and NOT gates. These are then used to build combinational ternary NAND, NOR, XOR and XNOR gates, as well as data handling ternary MAX and MIN gates. Our simulations are performed using a 50-nm process which are verified with in-house fabricated indium-tin-oxide memristors, optimized for fast switching, high transconductance, and low current leakage. We obtain close to an order of magnitude improvement in data density over conventional CMOS logic, and a reduction of switching speed by a factor of 13 over prior state-of-the-art ternary memristor results. We anticipate extensions of this work can realize practical implementation where high data density is of critical importance.</div>


2020 ◽  
Vol 09 (04) ◽  
pp. 2050019
Author(s):  
H. C. Chiang ◽  
T. Dyson ◽  
E. Egan ◽  
S. Eyono ◽  
N. Ghazi ◽  
...  

Measurements of redshifted 21[Formula: see text]cm emission of neutral hydrogen at [Formula: see text][Formula: see text]MHz have the potential to probe the cosmic “dark ages,” a period of the universe’s history that remains unobserved to date. Observations at these frequencies are exceptionally challenging because of bright Galactic foregrounds, ionospheric contamination, and terrestrial radio-frequency interference. Very few sky maps exist at [Formula: see text][Formula: see text]MHz, and most have modest resolution. We introduce the Array of Long Baseline Antennas for Taking Radio Observations from the Sub-Antarctic (ALBATROS), a new experiment that aims to image low-frequency Galactic emission with an order-of-magnitude improvement in resolution over existing data. The ALBATROS array will consist of antenna stations that operate autonomously, each recording baseband data that will be interferometrically combined offline. The array will be installed on Marion Island and will ultimately comprise 10 stations, with an operating frequency range of 1.2–125[Formula: see text]MHz and maximum baseline lengths of [Formula: see text][Formula: see text]km. We present the ALBATROS instrument design and discuss pathfinder observations that were taken from Marion Island during 2018–2019.


2019 ◽  
Vol 36 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Meng-Juan Xiao ◽  
Zhen-Su She

AbstractWe report the results of accurate prediction of lift ($$C_L$$CL) and drag ($$C_D$$CD) coefficients of two typical airfoil flows (NACA0012 and RAE2822) by a new algebraic turbulence model, in which the eddy viscosity is specified by a stress length (SL) function predicted by structural ensemble dynamics (SED) theory. Unprecedented accuracy of the prediction of $$C_D$$CD with error of a few counts (one count is $$10^{-4}$$10-4) and of $$C_L$$CL with error under 1%-2% are uniformly obtained for varying angles of attack (AoA), indicating an order of magnitude improvement of drag prediction accuracy compared to currently used models (typically around 20 to 30 counts). More interestingly, the SED-SL model is distinguished with fewer parameters of clear physical meaning, which quantify underlying turbulent boundary layer (TBL) with a universal multi-layer structure, and is thus promising to be more easily generalizable to complex TBL. The use of the new model for the calibration of flow condition in experiment and the extraction of flow physics from numerical simulation data of aeronautic flows are discussed.


2020 ◽  
Vol 500 (3) ◽  
pp. 3162-3177
Author(s):  
Jurek B Bauer ◽  
David J E Marsh ◽  
Renée Hložek ◽  
Hamsa Padmanabhan ◽  
Alex Laguë

ABSTRACT We consider intensity mapping (IM) of neutral hydrogen (H i) in the redshift range 0 ≲ z ≲ 3 employing a halo model approach where H i is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H i density, $\Omega _{\rm H\, \rm {\small I}}$, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H i power spectrum on scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use the Fisher matrix formalism to forecast the ability of future H i surveys to constrain the axion fraction of DM and marginalize over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent, and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of masses.


2017 ◽  
Vol 13 (S336) ◽  
pp. 439-442
Author(s):  
M. Rioja ◽  
R. Dodson ◽  
G. Orosz ◽  
H. Imai

AbstractObservations at low frequencies (<8GHz) are dominated by distinct direction dependent ionospheric propagation errors, which place a very tight limit on the angular separation of a suitable phase referencing calibrator and astrometry. To increase the capability for high precision astrometric measurements an effective calibration strategy of the systematic ionospheric propagation effects that is widely applicable is required. The MultiView technique holds the key to the compensation of atmospheric spatial-structure errors, by using observations of multiple calibrators and two dimensional interpolation. In this paper we present the first demonstration of the power of MultiView using three calibrators, several degrees from the target, along with a comparative study of the astrometric accuracy between MultiView and phase-referencing techniques. MultiView calibration provides an order of magnitude improvement in astrometry with respect to conventional phase referencing, achieving ~100micro-arcseconds astrometry errors in a single epoch of observations, effectively reaching the thermal noise limit.


2008 ◽  
Vol 85 (7) ◽  
pp. 1003-1022 ◽  
Author(s):  
Imma Boada ◽  
Narcís Coll ◽  
Narcís Madern ◽  
J. Antoni Sellarès

1994 ◽  
Vol 8 (1) ◽  
pp. 43-71 ◽  
Author(s):  
Atsuyuki Okabe ◽  
Barry Boots ◽  
Kokichi Sugihara

Sign in / Sign up

Export Citation Format

Share Document