generalized voronoi diagrams
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fen Tang ◽  
Xiong You ◽  
Xin Zhang ◽  
Kunwei Li

Grid-based Generalized Voronoi Diagrams (GVDs) are widely used to represent the surrounding environment of intelligent agents in the fields of robotics, computer games, and military simulations, which improve the efficiency of path planning of intelligent agents. Current studies mainly focus on square-grid-based GVD construction approaches, and little attention has been paid to constructing GVDs from hexagonal grids. In this paper, an algorithm named hexagon-based crystal growth (HCG) is presented to extract GVDs from hexagonal grids. In addition, two thinning patterns for obtaining one-cell-wide GVDs from rough hexagon-based GVDs are proposed. On the basis of the principles of a leading square-grid-based algorithm named Brushfire, a hexagon-based Brushfire algorithm is realized. A comparison of the HCG and the hexagon-based Brushfire algorithm shows that HCG is much more efficient. Further, the usefulness of hexagon-based GVDs for the path planning tasks of intelligent agents is demonstrated using several representative simulation experiments.


Author(s):  
Rushabh Patel ◽  
Paolo Frasca ◽  
Francesco Bullo

We consider the problem of optimal coverage with area-constraints in a mobile multi-agent system. For a planar environment with an associated density function, this problem is equivalent to dividing the environment into optimal subregions such that each agent is responsible for the coverage of its own region. In this paper, we design a continuous-time distributed policy which allows a team of agents to achieve a convex area-constrained partition of a convex workspace. Our work is related to the classic Lloyd algorithm, and makes use of generalized Voronoi diagrams. We also discuss practical implementation for real mobile networks. Simulation methods are presented and discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Quanjun Yin ◽  
Long Qin ◽  
Xiaocheng Liu ◽  
Yabing Zha

In robotics, Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than210×210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.


Author(s):  
Rushabh Patel ◽  
Paolo Frasca ◽  
Francesco Bullo

We consider the problem of optimal coverage with area-constraints in a mobile multi-agent system. For a planar environment with an associated density function, this problem is equivalent to dividing the environment into optimal subregions such that each agent is responsible for the coverage of its own region. In this paper, we design a continuous-time distributed policy which allows a team of agents to achieve a convex area-constrained partition of a convex workspace. Our work is related to the classic Lloyd algorithm, and makes use of generalized Voronoi diagrams. We also discuss practical implementation for real mobile networks. Simulation methods are presented and discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Long Qin ◽  
Quanjun Yin ◽  
Yabing Zha ◽  
Yong Peng

In the context of robotics, the grid-based Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent their surrounding area. Current approaches for incrementally constructing GVDs mainly focus on providing metric skeletons of underlying grids, while the connectivity among GVD vertices and edges remains implicit, which makes high-level spatial reasoning tasks impractical. In this paper, we present an algorithm named Dynamic Topology Detector (DTD) for extracting a GVD with topological information from a grid map. Beyond the construction and reconstruction of a GVD on grids, DTD further extracts connectivity among the GVD edges and vertices. DTD also provides efficient repair mechanism to treat with local changes, making it work well in dynamic environments. Simulation tests in representative scenarios demonstrate that (1) compared with the static algorithms, DTD generally makes an order of magnitude improvement regarding computation times when working in dynamic environments; (2) with negligible extra computation, DTD detects topologies not computed by existing incremental algorithms. We also demonstrate the usefulness of the resulting topological information for high-level path planning tasks.


Sign in / Sign up

Export Citation Format

Share Document