scholarly journals Chitinase from a Novel Strain ofSerratia marcescensJPP1 for Biocontrol of Aflatoxin: Molecular Characterization and Production Optimization Using Response Surface Methodology

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kai Wang ◽  
Pei-sheng Yan ◽  
Li-xin Cao

Chitinase is one of the most important mycolytic enzymes with industrial significance, and produced by a number of organisms. A chitinase producing isolateSerratia marcescensJPP1 was obtained from peanut hulls in Jiangsu Province, China, and exhibited antagonistic activity against aflatoxins. In this study, we describe the optimization of medium composition with increased production of chitinase for the selected bacteria using statistical methods: Plackett-Burman design was applied to find the key ingredients, and central composite design of response surface methodology was used to optimize the levels of key ingredients for the best yield of chitinase. Maximum chitinase production was predicted to be 23.09 U/mL for a 2.1-fold increase in medium containing 12.70 g/L colloidal chitin, 7.34 g/L glucose, 5.00 g/L peptone, 1.32 g/L (NH4)2SO4, 0.7 g/L K2HPO4, and 0.5 g/L MgSO4·7H2O. Polymerase chain reaction (PCR) amplification of the JPP1 chitinase gene was performed and obtained a 1,789 bp nucleotide sequence; its open reading frame encoded a protein of 499 amino acids named as ChiBjp.

2020 ◽  
Vol 13 (41) ◽  
pp. 4307-4318
Author(s):  
Priyanka Srinivasan ◽  

Background/Objectives: Zeaxanthin is a xanthophyll carotenoid revered for its role in the prevention of age related macular degeneration. The study evaluated the zeaxanthin accumulation of the marine Cyanophycean alga Trichodesmium thiebautii (NIOT 152). A sequential statistical technique was applied to optimize the Artificial Sea Water nutrient medium (ASN-III) components for enhancing the zeaxanthin accumulation in T. thiebautii. Methods: A two-level statistical approach involving Plackett-Burman (PB) design to screen the most important nutrients influencing the zeaxanthin accumulation followed by Response surface methodology (RSM) was employed. The results of PB design revealed sodium nitrate, disodium EDTA, magnesium sulphate and sodium carbonate as the crucial medium components for increasing zeaxanthin accumulation. Further, RSM was employed to study the interaction between these factors and identified an optimum concentration of the ingredients for higher zeaxanthin production. Findings: The optimized medium components resulted in 2.33 fold increase in zeaxanthin accumulation (4.3 ± 1.29 mg L-1) as compared to ASN III medium (1.84 ± 0.12 mg L-1). Novelty: There are only few studies on laboratory cultured Trichodesmium and only very few reports are available regarding pigment production from Trichodesmium sp. The present study successfully demonstrated the statistical optimization of ASN III medium to improve zeaxanthin accumulation by Trichodesmium thiebautii. Keywords: ASN III medium; zeaxanthin; Trichodesmium thiebautii; Plackett-Burman; response surface methodology REFERENCE


2006 ◽  
Vol 52 (5) ◽  
pp. 445-450 ◽  
Author(s):  
C Bernal ◽  
I Diaz ◽  
N Coello

A 43-fold increase in keratinase production by Kocuria rosea was achieved in batch fermentation using response surface methodology. Factorial designs were used to select the components of a culture medium that showed a significant effect on keratinase production. An orthogonal–central composite experimental design was performed, with only two (feathers and magnesium) from nine initial compounds being further analyzed by response surface methodology. An optimum keratinase production of 14 886.9 U/mg was obtained with the following medium composition (per litre): NH4Cl, 0.3 g; NaCl, 0.3 g; K2HPO4, 3.2 g; KH2PO4, 4.0 g; MgSO4·6H2O, 0.5 g; yeast extract, 0.1 g; and finely milled feathers, 30 g. The medium was shaken at 400 r/min with an incubation period of 14 h at 40 °C.Key words: feathers, keratinases, Kocuria rosea, medium optimization, response surface methodology.


2021 ◽  
Vol 788 (1) ◽  
pp. 012038
Author(s):  
Rohmatussolihat ◽  
R Ridwan ◽  
Y Widyastuti ◽  
N F Sari ◽  
R Fidryanto ◽  
...  

2014 ◽  
Vol 522-524 ◽  
pp. 295-298
Author(s):  
Kai Wang ◽  
Pei Sheng Yan ◽  
Li Xin Cao

Aflatoxins (AFs) are a series of highly toxic and carcinogenic secondary metabolites. In order to eliminate AFs contamination, biological control is one of the more promising techniques. In this study, we describe the optimization of media nutrients for the selected biocontrol bacterium, Lysinibacillus xylanilyticus strain BPM1. The strain was isolated from the peanut hulls in Shandong Province, China and exhibited antagonistic activity against aflatoxins. Maltose and sucrose were identified as best carbon source, while soya peptone and yeast extract as nitrogen source led to the highest OD600 observations. Medium composition was optimized using Plackett-Burman design, which was applied to find the key ingredients. The results revealed that the most significant two factors which were more effective in the fermentation of L. xylanilyticus BPM1 were soya peptone and yeast extract.


Sign in / Sign up

Export Citation Format

Share Document