recombinant laccase
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 22 (17) ◽  
pp. 9593
Author(s):  
Katarzyna M. Wiśniewska ◽  
Aleksandra Twarda-Clapa ◽  
Aneta M. Białkowska

Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap‑Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2′‑azino‑bis(3‑ethylbenzothiazoline‑6‑sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.


Biologia ◽  
2021 ◽  
Author(s):  
Arzu Öztürk Kesebir ◽  
Deryanur Kılıç ◽  
Melda Şişecioğlu ◽  
Ahmet Adıgüzel ◽  
Ömer İrfan Küfrevioğlu

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Dai ◽  
Qian Yao ◽  
Gen Yu ◽  
Shan Liu ◽  
Jeonyun Yun ◽  
...  

Laccase is a copper-containing polyphenol oxidase with a wide range of substrates, possessing a good application prospect in wastewater treatment and dye degradation. The purpose of this research is to study the degradation of various industrial dyes by recombinant laccase rlac1338 and the mutant enzyme lac2-9 with the highest enzyme activity after modification by error-prone PCR. Four enzyme activities improved mutant enzymes were obtained through preliminary screening and rescreening, of which lac2-9 has the highest enzyme activity. There are four mutation sites, including V281A, V281A, P309L, S318G, and D232V. The results showed that the expression of the optimized mutant enzyme also increased by 22 ± 2% compared to the unoptimized enzyme and the optimal reaction temperature of the mutant enzyme lac2-9 was 5°C higher than that of the rlac1338, and the optimal pH increased by 0.5 units. The thermal stability and pH stability of mutant enzyme lac2-9 were also improved. With ABTS as the substrate, the kcat/Km of rlac1338 and mutant strain lac2-9 are the largest than other substrates, 0.1638 and 0.618 s–1M–1, respectively, indicating that ABTS is the most suitable substrate for the recombinant enzyme and mutant enzyme. In addition, the Km of the mutant strain lac2-9 (76 μM) was significantly lower, but the kcat/Km (0.618 s–1M–1) was significantly higher, and the specific enzyme activity (79.8 U/mg) increased by 3.5 times compared with the recombinant laccase (22.8 U/mg). The dye degradation results showed that the use of rlac1338 and lac2-9 alone had no degradation effect on the industrial dyes [indigo, amaranth, bromophenol blue, acid violet 7, Congo red, coomassie brilliant blue (G250)], however, adding small molecular mediators Ca2+ and ABTS at the same time can significantly improve the degradation ability. Compared to the rlac1338, the degradation rates with the simultaneous addition of Ca2+ and ABTS of mutant enzyme lac2-9 for acid violet 7, bromophenol blue and coomassie brilliant blue significantly improved by 8.3; 3.4 and 3.4 times. Therefore, the results indicated that the error-prone PCR was a feasible method to improve the degradation activity of laccase for environmental pollutants, which provided a basis for the application of laccase on dye degradation and other environmental pollutants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faustine Lorquin ◽  
Fabio Ziarelli ◽  
Agnès Amouric ◽  
Carole Di Giorgio ◽  
Maxime Robin ◽  
...  

AbstractPyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase extract with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car–Car bindings predominated in the three polymers, Car–O–Car (ether) linkages being absent, proposing mainly C3-C6 (α-bindings) and C4-C6 (β-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,400 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.


2021 ◽  
Vol 168 ◽  
pp. 107958
Author(s):  
Nguyen Duc Huy ◽  
Nguyen Thi My Le ◽  
Kit Wayne Chew ◽  
Seung-Moon Park ◽  
Pau Loke Show

2020 ◽  
Author(s):  
Faustine Lorquin ◽  
Fabio Ziarelli ◽  
Agnès Amouric ◽  
Carole Di Giorgio ◽  
Maxime Robin ◽  
...  

Abstract Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car-Car bindings predominated in the three polymers, Car-O-Car (ether) linkages being absent, proposing mainly C3-C6 (β-bindings) and C4-C6 (α-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,700 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.


2020 ◽  
Vol 8 (4) ◽  
pp. 601 ◽  
Author(s):  
Qian Song ◽  
Xun Deng ◽  
Rui-Qing Song

Pleurotus ostreatus is a species of white-rot fungi that effectively degrades lignin. In this study, we aimed to efficiently express the lac-2 gene of Pleurotus ostreatus in the Pichia pastoris X33 yeast strain. The enzymatic properties of recombinant yeast were determined, and its ability to degrade corn stover lignin was determined. The results showed the optimum pH values of recombinant laccase for 2,2’-Azinobis-3-ethylbenzothiazoline-6-sulfonic acid, 2,6-dimethoxyphenol, and 2-methoxyphenol were 3.0, 3.0, and 3.5, respectively. The optimum reaction temperature was 50 °C, and it had good thermal stability and acid and alkali resistance. The degradation rate of lignin in corn stover by recombinant laccase was 18.36%, and the native Pleurotus ostreatus degradation rate was 14.05%, the difference between them is significant (p < 0.05). This experiment lays a foundation for the study of the degradation mechanism of lignin by laccase.


Sign in / Sign up

Export Citation Format

Share Document