scholarly journals Global Stability of a Stage-Structured Predator-Prey Model with Stochastic Perturbation

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Liu Yang ◽  
Shouming Zhong

This paper is concerned with a new predator-prey model with stage structure on prey, in which the immature prey and the mature prey are preyed on by predator. We think that the model is more realistic and interesting than the one in which only the immature prey or the mature prey is consumed by predator. Our work shows that the stochastic model and its corresponding deterministic system have a unique global positive solution and the positive solution is global asymptotic stability for each model. If the positive equilibrium point of the deterministic system is globally stable, then the stochastic model will preserve the nice property provided that the noise is sufficiently small. Results are analyzed with the help of graphical illustrations.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jinlei Liu ◽  
Wencai Zhao

In this paper, a stochastic Lotka–Volterra predator-prey model with discrete delays and feedback control is studied. Firstly, the existence and uniqueness of global positive solution are proved. Further, we investigate the asymptotic property of stochastic system at the positive equilibrium point of the corresponding deterministic model and establish sufficient conditions for the persistence and extinction of the model. Finally, the correctness of the theoretical derivation is verified by numerical simulations.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150038
Author(s):  
Meijun Chen ◽  
Huaihuo Cao ◽  
Shengmao Fu

In this paper, a predator–prey model with prey-stage structure and prey-taxis is proposed and studied. Firstly, the local stability of non-negative constant equilibria is analyzed. It is shown that non-negative equilibria have the same stability between ODE system and self-diffusion system, and self-diffusion does not have a destabilization effect. We find that there exists a threshold value [Formula: see text] such that the positive equilibrium point of the model becomes unstable when the prey-taxis rate [Formula: see text], hence the taxis-driven Turing instability occurs. Furthermore, by applying Crandall–Rabinowitz bifurcation theory, the existence, the stability and instability, and the turning direction of bifurcating steady state are investigated in detail. Finally, numerical simulations are provided to support the mathematical analysis.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wanying Shi ◽  
Youlin Huang ◽  
Chunjin Wei ◽  
Shuwen Zhang

In this paper, we study a stochastic Holling-type II predator-prey model with stage structure and refuge for prey. Firstly, the existence and uniqueness of the global positive solution of the system are proved. Secondly, the stochastically ultimate boundedness of the solution is discussed. Next, sufficient conditions for the existence and uniqueness of ergodic stationary distribution of the positive solution are established by constructing a suitable stochastic Lyapunov function. Then, sufficient conditions for the extinction of predator population in two cases and that of prey population in one case are obtained. Finally, some numerical simulations are presented to verify our results.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350012 ◽  
Author(s):  
CHUNYAN JI ◽  
DAQING JIANG

In this paper, we discuss the behavior of a predator–prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equilibrium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haihong Li ◽  
Daqing Jiang ◽  
Fuzhong Cong ◽  
Haixia Li

We analyze a predator prey model with stochastic perturbation. First, we show that this system has a unique positive solution. Then, we deduce conditions that the system is persistent in time average. Furthermore, we show the conditions that there is a stationary distribution of the system which implies that the system is permanent. After that, conditions for the system going extinct in probability are established. At last, numerical simulations are carried out to support our results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
T. Suebcharoen

This paper studies the behavior of a predator-prey model with switching and stage-structure for predator. Bounded positive solution, equilibria, and stabilities are determined for the system of delay differential equation. By choosing the delay as a bifurcation parameter, it is shown that the positive equilibrium can be destabilized through a Hopf bifurcation. Some numerical simulations are also given to illustrate our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


Sign in / Sign up

Export Citation Format

Share Document