scholarly journals A New Evolutionary-Incremental Framework for Feature Selection

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamad-Hoseyn Sigari ◽  
Muhammad-Reza Pourshahabi ◽  
Hamid-Reza Pourreza

Feature selection is an NP-hard problem from the viewpoint of algorithm design and it is one of the main open problems in pattern recognition. In this paper, we propose a new evolutionary-incremental framework for feature selection. The proposed framework can be applied on an ordinary evolutionary algorithm (EA) such as genetic algorithm (GA) or invasive weed optimization (IWO). This framework proposes some generic modifications on ordinary EAs to be compatible with the variable length of solutions. In this framework, the solutions related to the primary generations have short length. Then, the length of solutions may be increased through generations gradually. In addition, our evolutionary-incremental framework deploys two new operators called addition and deletion operators which change the length of solutions randomly. For evaluation of the proposed framework, we use that for feature selection in the application of face recognition. In this regard, we applied our feature selection method on a robust face recognition algorithm which is based on the extraction of Gabor coefficients. Experimental results show that our proposed evolutionary-incremental framework can select a few number of features from existing thousands features efficiently. Comparison result of the proposed methods with the previous methods shows that our framework is comprehensive, robust, and well-defined to apply on many EAs for feature selection.

2013 ◽  
Vol 8 (2) ◽  
pp. 787-795
Author(s):  
Sasi Kumar Balasundaram ◽  
J. Umadevi ◽  
B. Sankara Gomathi

This paper aims to achieve the best color face recognition performance. The newly introduced feature selection method takes advantage of novel learning which is used to find the optimal set of color-component features for the purpose of achieving the best face recognition result. The proposed color face recognition method consists of two parts namely color-component feature selection with boosting and color face recognition solution using selected color component features. This method is better than existing color face recognition methods with illumination, pose variation and low resolution face images. This system is based on the selection of the best color component features from various color models using the novel boosting learning framework. These selected color component features are then combined into a single concatenated color feature using weighted feature fusion. The effectiveness of color face recognition method has been successfully evaluated by the public face databases.


2021 ◽  
Vol 18 (5) ◽  
pp. 6638-6651
Author(s):  
Huilin Ge ◽  
◽  
Yuewei Dai ◽  
Zhiyu Zhu ◽  
Biao Wang

<abstract> <sec><title>Purpose</title><p>Due to the lack of prior knowledge of face images, large illumination changes, and complex backgrounds, the accuracy of face recognition is low. To address this issue, we propose a face detection and recognition algorithm based on multi-task convolutional neural network (MTCNN).</p> </sec> <sec><title>Methods</title><p>In our paper, MTCNN mainly uses three cascaded networks, and adopts the idea of candidate box plus classifier to perform fast and efficient face recognition. The model is trained on a database of 50 faces we have collected, and Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measurement (SSIM), and receiver operating characteristic (ROC) curve are used to analyse MTCNN, Region-CNN (R-CNN) and Faster R-CNN.</p> </sec> <sec><title>Results</title><p>The average PSNR of this technique is 1.24 dB higher than that of R-CNN and 0.94 dB higher than that of Faster R-CNN. The average SSIM value of MTCNN is 10.3% higher than R-CNN and 8.7% higher than Faster R-CNN. The Area Under Curve (AUC) of MTCNN is 97.56%, the AUC of R-CNN is 91.24%, and the AUC of Faster R-CNN is 92.01%. MTCNN has the best comprehensive performance in face recognition. For the face images with defective features, MTCNN still has the best effect.</p> </sec> <sec><title>Conclusions</title><p>This algorithm can effectively improve face recognition to a certain extent. The accuracy rate and the reduction of the false detection rate of face detection can not only be better used in key places, ensure the safety of property and security of the people, improve safety, but also better reduce the waste of human resources and improve efficiency.</p> </sec> </abstract>


Sign in / Sign up

Export Citation Format

Share Document