scholarly journals Fault Detection for Network Control Systems with Multiple Communication Delays and Stochastic Missing Measurements

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Ming Lyu ◽  
Hamid Reza Karimi ◽  
Jian Zuo ◽  
Yuming Bo

This paper is concerned with fault detection problem for a class of network control systems (NCSs) with multiple communication delays and stochastic missing measurements. The missing measurement phenomenon occurs in a random way and the occurrence probability for each measurement output is governed by an individual random variable. Besides, the multiple communication delay phenomenon reflects that networked control systems have different communication delays when the signals are transferred via different channels. We aim to design a fault detection filter so that the overall fault detection dynamics is exponentially stable in the mean square. By constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection filter for the discrete systems, and the filter parameters are also derived by solving linear matrix inequality. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Pengfei Guo ◽  
Ming Lyu ◽  
Hamid Reza Karimi ◽  
Yuming Bo

The fault detection problem is investigated for a class of wireless network control systems which has stochastic uncertainties in the state-space matrices, combined with time delays and nonlinear disturbance. First, the system error observer is proposed. Then, by constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection observer for the discrete system, and observer gain is also derived by solving linear matrix inequalities. Finally, a simulation example shows that when a fault happens, the observer residual rises rapidly and fault can be quickly detected, which demonstrates the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Long Wang ◽  
Tian-Bao Wang ◽  
Wei-Wei Che

This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.


2012 ◽  
Vol 45 (20) ◽  
pp. 1035-1040 ◽  
Author(s):  
Paul E. Méndez-Monroy ◽  
Manel Velasco ◽  
Josep M. Fuertes

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Weilai Jiang ◽  
Chaoyang Dong ◽  
Erzhuo Niu ◽  
Qing Wang

The problem of robust fault detection filter (FDF) design and optimization is investigated for a class of networked control systems (NCSs) with random delays. The NCSs are modeled as Markovian jump systems (MJSs) by assuming that the random delays obey a Markov chain. Based on the model, an observer-based residual generator is constructed and the corresponding fault detection problem is formulated as anH∞filtering problem by which the error between the residual signal and the fault is made as small as possible. A sufficient condition for the existence of the desired FDF is derived in terms of linear matrix inequalities (LMIs). Furthermore, to improve the performance of the robust fault detection systems, a time domain optimization approach is proposed. The solution of the optimization problem is given in the form of Moore-Penrose inverse of matrix. A numerical example is provided to illustrate the effectiveness and potential of the proposed approach.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Lihong Rong ◽  
Xiuyan Peng ◽  
Liangliang Liu ◽  
Biao Zhang

The fault detection (FD) reduced-order filtering problem is investigated for a family of polytopic uncertain discrete-time Markovian jump linear systems (MJLSs) with time-varying delays. Under meeting the control precision requirements of the complex systems, the reduced-order fault detection filter can improve the efficiency of the fault detection. Then, by the aid of the Markovian Lyapunov function and convex polyhedron techniques, some novel time-varying delays and polytopic uncertain sufficient conditions in terms of linear matrix inequality (LMI) are proposed to insure the existence of the FD reduced-order filter. Finally, an illustrative example is provided to verify the usefulness of the given method.


Sign in / Sign up

Export Citation Format

Share Document