scholarly journals Potential Rainwater Harvesting Improvement Using Advanced Remote Sensing Applications

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamed Elhag ◽  
Jarbou A. Bahrawi

The amount of water on earth is the same and only the distribution and the reallocation of water forms are altered in both time and space. To improve the rainwater harvesting a better understanding of the hydrological cycle is mandatory. Clouds are major component of the hydrological cycle; therefore, clouds distribution is the keystone of better rainwater harvesting. Remote sensing technology has shown robust capabilities in resolving challenges of water resource management in arid environments. Soil moisture content and cloud average distribution are essential remote sensing applications in extracting information of geophysical, geomorphological, and meteorological interest from satellite images. Current research study aimed to map the soil moisture content using recent Landsat 8 images and to map cloud average distribution of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to October 2011. Cloud average distribution map shows specific location in the study area where it is always cloudy all the year and the site corresponding soil moisture content map came in agreement with cloud distribution. The overlay of the two previously mentioned maps over the geological map of the study area shows potential locations for better rainwater harvesting.

Author(s):  
M. Entezari ◽  
A. Esmaeily ◽  
S. Niazmardi

Abstract. Soil moisture estimation is essential for optimal water and soil resources management. Surface soil moisture is an important variable in the natural water cycle, which plays an important role in the global equilibrium of water and energy due to its impact on hydrological, ecological and meteorological processes. Soil moisture changes due to the variability of soil characteristics, topography and vegetation in time and place. Soil moisture measurements are performed directly using in situ methods and indirect, by means of transfer functions or remote sensing. Since in-site measurements are usually costly and time-consuming in large areas, we can use methods such as remote sensing to estimate soil moisture at very large scales. The purpose of this study is to estimate soil moisture using surface temperature and vegetation indices for large areas. In this paper, ground temperature was calculated using Landsat-8 thermal band for Mashhad city and was used to estimate the soil moisture content of the study area. The results showed that urban areas had the highest temperature and less humidity at the time of imaging. For this purpose, using the LANDSAT 8 images, the indices were extracted and validated with soil moisture data. In this research, the study area was described and then, using the extracted indices, the estimated model was obtained. The results showed that there is a good correlation between surface soil moisture content with LST and NDVI indices (95%). The results of the verification of the soil moisture estimation model also showed that this model with a mean error of less than 0.001 can predict the surface moisture content, this small amount of error indicates the precision of the proposed model for estimating surface moisture.


2019 ◽  
Vol 11 (4) ◽  
pp. 456 ◽  
Author(s):  
Jieyun Zhang ◽  
Qingling Zhang ◽  
Anming Bao ◽  
Yujuan Wang

Soil moisture, as a crucial indicator of dryness, is an important research topic for dryness monitoring. In this study, we propose a new remote sensing dryness index for measuring soil moisture from spectral space. We first established a spectral space with remote sensing reflectance data at the near-infrared (NIR) and red (R) bands. Considering the distribution regularities of soil moisture in this space, we formulated the Ratio Dryness Monitoring Index (RDMI) as a new dryness monitoring indicator. We compared RDMI values with in situ soil moisture content data measured at 0–10 cm depth. Results showed that there was a strong negative correlation (R = −0.89) between the RDMI values and in situ soil moisture content. We further compared RDMI with existing remote sensing dryness indices, and the results demonstrated the advantages of the RDMI. We applied the RDMI to the Landsat-8 imagery to map dryness distribution around the Fukang area on the Northern slope of the Tianshan Mountains, and to the MODIS imagery to detect the spatial and temporal changes in dryness for the entire Xinjiang in 2013 and 2014. Overall, the RDMI index constructed, based on the NIR–Red spectral space, is simple to calculate, easy to understand, and can be applied to dryness monitoring at different scales.


2019 ◽  
Vol 41 (9) ◽  
pp. 3346-3367 ◽  
Author(s):  
Mireguli Ainiwaer ◽  
Jianli Ding ◽  
Nijat Kasim ◽  
Jingzhe Wang ◽  
Jinjie Wang

1996 ◽  
Vol 41 (4) ◽  
pp. 517-530 ◽  
Author(s):  
T. J. JACKSON ◽  
J. SCHMUGGE ◽  
E. T. ENGMAN

Author(s):  
R. Prajapati ◽  
D. Chakraborty ◽  
V. Kumar

<p><strong>Abstract.</strong> Soil moisture influences numerous environmental processes occurring over large spatial and temporal scales. It profoundly influences the hydrological and meteorological activity together with climate predictions and hazard analysis. Space-borne sensors are capable of retrieving the surface soil moisture over a region on a regular basis. Latent heat measurements of soil, reflectance based methods, microwave measurements and synergistic approaches are some of the techniques used since long for providing soil moisture estimates over regional and global scales. Due to the dynamic interaction of soil with crops, retrieval of surface soil moisture is always challenging. This paper gives a brief overview of advance in soil moisture retrieval techniques, and an attempt to generate surface soil moisture from fine-resolution satellite remote sensing data. The optical remote sensing explores the linear relationship between land surface reflectance and soil moisture content, and through development of empirical spectral vegetation indices. Another way to estimate soil moisture emerged by measuring amplitude of diurnal temperature, which is closely related to thermal conductivity and heat capacity of soil. Emergence of radiometric satellite measurements at fine resolution has reached at a higher level of technology these days. Microwave remote sensing techniques have a long legacy of providing surface soil moisture estimates with reasonable accuracy. The SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Passive and Active) missions launched in 2009 and 2015 respectively, are completely dedicated for providing soil moisture at global scale with a spatial resolution of 35<span class="thinspace"></span>km &amp; 3&amp;ndash;40<span class="thinspace"></span>km. These soil moisture products, however, provides data at highly coarser spatial resolution. The launch of Sentinels gave insight by providing active radar and optical data at higher resolution (&amp;sim;10<span class="thinspace"></span>m). Sentinel-1 is the first SAR (Synthetic Aperture Radar) constellation having 6-day revisit time providing data in C-band with dual polarisations. However, no algorithm or methodology is available to generate surface soil moisture product at a finer resolution from dual polarisations. Sentinel-1 data has been used to generate regional surface soil moisture image through modelling. The same has been also used for generating surface soil moisture map of IARI farm at New Delhi. Dubois, a bare surface model, was tested for its suitability for surface soil moisture retrieval of the farm. In addition, radar- based Soil moisture (SM) proxy method was used over Sentinel-1 data for the month of July 2018, and validated through actual surface soil moisture (gravimetric) measurements. Results were satisfactory for a range of 4&amp;ndash;16<span class="thinspace"></span>m<sup>3</sup><span class="thinspace"></span>m<sup>&amp;minus;3</sup> of soil moisture, with coefficient of determination (R<sup>2</sup>) as 0.45, RMSE of 2.35 and a p-value of 0.005. However, over a higher range of soil moisture (21&amp;ndash;33<span class="thinspace"></span>m<sup>3</sup><span class="thinspace"></span>m<sup>&amp;minus;3</sup>), which occurred after the rainfall, the R<sup>2</sup> value reduced to 0.22 with larger RMSE. Results suggested that SM-proxy approach might work well for a limited range (drier part) of soil moisture content, and not for the wet soil.</p>


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 62 ◽  
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
José Marques da Silva

Extensive animal production in Iberian Peninsula is based on pastures, integrated within the important agro-silvo-pastoral system, named “montado” in Portugal and “dehesa” in Spain. Temperature and precipitation are the main driving climatic factors affecting agricultural productivity and, in dryland pastures, the hydrological cycle of soil, identified by soil moisture content (SMC), is the main engine of the vegetation development. The objective of this work was to evaluate the normalized difference water index (NDWI) based on Sentinel-2 imagery as a tool for monitoring pasture seasonal dynamics and inter-annual variability in a Mediterranean agro-silvo-pastoral system. Forty-one valid NDWI records were used between January and June 2016 and between January 2017 and June 2018. The 2.3 ha experimental field is located within the “Mitra” farm, in the South of Portugal. Soil moisture content, pasture moisture content (PMC), pasture surface temperature (Tir), pasture biomass productivity and pasture quality degradation index (PQDI) were evaluated in 12 satellite pixels (10 m × 10 m). The results show significant correlations (p < 0.01) between NDWI and: (i) SMC (R2 = 0.7548); (ii) PMC (R2 = 0.8938); (iii) Tir (R2 = 0.5428); (iv) biomass (R2 = 0.7556); and (v) PQDI (R2 = 0.7333). These findings suggest that satellite-derived NDWI can be used in site-specific management of “montado” ecosystem to support farmers’ decision making.


Sign in / Sign up

Export Citation Format

Share Document