scholarly journals Chaotic Behaviors of Symbolic Dynamics about Rule 58 in Cellular Automata

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yangjun Pei ◽  
Qi Han ◽  
Chao Liu ◽  
Dedong Tang ◽  
Junjian Huang

The complex dynamical behaviors of rule 58 in cellular automata are investigated from the viewpoint of symbolic dynamics. The rule is Bernoulliστ-shift rule, which is members of Wolfram’s class II, and it was said to be simple as periodic before. It is worthwhile to study dynamical behaviors of rule 58 and whether it possesses chaotic attractors or not. It is shown that there exist two Bernoulli-measure attractors of rule 58. The dynamical properties of topological entropy and topological mixing of rule 58 are exploited on these two subsystems. According to corresponding strongly connected graph of transition matrices of determinative block systems, we divide determinative block systems into two subsets. In addition, it is shown that rule 58 possesses rich and complicated dynamical behaviors in the space of bi-infinite sequences. Furthermore, we prove that four rules of global equivalence classε43of CA are topologically conjugate. We use diagrams to explain the attractors of rule 58, where characteristic function is used to describe that some points fall into Bernoulli-shift map after several times iterations, and we find that these attractors are not global attractors. The Lameray diagram is used to show clearly the iterative process of an attractor.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zujie Bie ◽  
Qi Han ◽  
Chao Liu ◽  
Junjian Huang ◽  
Lepeng Song ◽  
...  

Wolfram divided the 256 elementary cellular automata rules informally into four classes using dynamical concepts like periodicity, stability, and chaos. Rule 24, which is Bernoulliστ-shift rule and is member of Wolfram’s class II, is said to be simple as periodic before. Therefore, it is worthwhile studying dynamical behaviors of four rules, whether they possess chaotic attractors or not. In this paper, the complex dynamical behaviors of rule 24 of one-dimensional cellular automata are investigated from the viewpoint of symbolic dynamics. We find that rule 24 is chaotic in the sense of both Li-Yorke and Devaney on its attractor. Furthermore, we prove that four rules of global equivalenceε52of cellular automata are topologically conjugate. Then, we use diagrams to explain the attractor of rule 24, where characteristic function is used to describe the fact that all points fall into Bernoulli-shift map after two iterations under rule 24.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Han ◽  
Xiaofeng Liao ◽  
Chuandong Li

Wolfram divided the 256 elementary cellular automata rules informally into four classes using dynamical concepts like periodicity, stability, and chaos. Rule 14, which is Bernoulliστ-shift rule and is a member of Wolfram’s class II, is said to be simple as periodic before. Therefore, it is worthwhile studying dynamical behaviors of rule 14, whether it possesses chaotic attractors or not. In this paper, the complex dynamical behaviors of rule 14 of one-dimensional cellular automata are investigated from the viewpoint of symbolic dynamics. We find that rule 14 is chaotic in the sense of both Li-Yorke and Devaney on its attractor. Then, we prove that there exist fixed points in rule 14. Finally, we use diagrams to explain the attractor of rule 14, where characteristic function is used to describe that all points fall into Bernoulli-shift map after two iterations under rule 14.


Author(s):  
Lin Chen ◽  
Fangyue Chen ◽  
Fangfang Chen ◽  
Weifeng Jin

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2001 ◽  
Vol 11 (06) ◽  
pp. 1683-1694 ◽  
Author(s):  
K. KARAMANOS

We show that the numbers generated by the symbolic dynamics of Feigenbaum attractors are transcendental. Due to the asymmetry of the chaotic attractors of unimodal maps around the maximum in the general case, a standard conjecture, that the occurrence of chaos is related to the transcendence of the number defined by the corresponding symbolic dynamics is reassessed and formulated in a quantitative manner. It is concluded that transcendence may provide an appropriate measure of complexity.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Huang ◽  
Zhen Wang ◽  
Yuxia Li

A fractional-order two-neuron Hopfield neural network with delay is proposed based on the classic well-known Hopfield neural networks, and further, the complex dynamical behaviors of such a network are investigated. A great variety of interesting dynamical phenomena, including single-periodic, multiple-periodic, and chaotic motions, are found to exist. The existence of chaotic attractors is verified by the bifurcation diagram and phase portraits as well.


2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


2018 ◽  
Vol 28 (04) ◽  
pp. 1850050 ◽  
Author(s):  
Ling Zhou ◽  
Chunhua Wang ◽  
Xin Zhang ◽  
Wei Yao

By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter [Formula: see text]. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.


2011 ◽  
Vol 21 (05) ◽  
pp. 1265-1279 ◽  
Author(s):  
XU XU ◽  
STEPHEN P. BANKS ◽  
MAHDI MAHFOUF

It is well-known that binary-valued cellular automata, which are defined by simple local rules, have the amazing feature of generating very complex patterns and having complicated dynamical behaviors. In this paper, we present a new type of cellular automaton based on real-valued states which produce an even greater amount of interesting structures such as fractal, chaotic and hypercyclic. We also give proofs to real-valued cellular systems which have fixed points and periodic solutions.


1999 ◽  
Vol 09 (06) ◽  
pp. 1219-1236 ◽  
Author(s):  
RADU DOGARU ◽  
LEON O. CHUA

The goal of this letter is to report a novel class of dynamical behaviors observed from a generalized cellular automata CNN [Chua, 1998] with piecewise-linear (PWL) cells. Starting from an almost homogeneous initial condition, self-making (autopoietic in the sense of [Varela et al., 1974]) patterns, reminiscent of simple living systems, emerge as a result of the nonlinear coupling among cells. Similar to patterns of organization characterizing living systems, our patterns display features such as growth, maturity and death. The discovery of such patterns was made possible via mutations in several piecewise-linear CNN cell realizations of the "Game of Life" [Conway, 1982].


Sign in / Sign up

Export Citation Format

Share Document