scholarly journals A Comparison Study of Extreme Learning Machine and Least Squares Support Vector Machine for Structural Impact Localization

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qingsong Xu

Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have been developed for the location prediction. Comparative studies of the basic ELM, kernel-based ELM, and LSSVM models are carried out. Results show that the kernel-based ELM requires the shortest learning time and it is capable of producing suboptimal localization accuracy among the three models. Hence, ELM paves a promising way in structural impact detection.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Chao Wang ◽  
Jianhui Wang ◽  
Shusheng Gu

Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-26 ◽  
Author(s):  
Wei Xie ◽  
Jie-sheng Wang ◽  
Cheng Xing ◽  
Sha-Sha Guo ◽  
Meng-wei Guo ◽  
...  

Soft-sensor technology plays a vital role in tracking and monitoring the key production indicators of the grinding and classifying process. Least squares support vector machine (LSSVM), as a soft-sensor model with strong generalization ability, can be used to predict key production indicators in complex grinding processes. The traditional crossvalidation method cannot obtain the ideal structure parameters of LSSVM. In order to improve the prediction accuracy of LSSVM, a golden sine Harris Hawk optimization (GSHHO) algorithm was proposed to optimize the structure parameters of LSSVM models with linear kernel, sigmoid kernel, polynomial kernel, and radial basis kernel, and the influences of GSHHO algorithm on the prediction accuracy under these LSSVM models were studied. In order to deal with the problem that the prediction accuracy of the model decreases due to changes of industrial status, this paper adopts moving window (MW) strategy to adaptively revise the LSSVM (MW-LSSVM), which greatly improves the prediction accuracy of the LSSVM. The prediction accuracy of the regularized extreme learning machine with MW strategy (MW-RELM) is higher than that of MW-LSSVM at some moments. Based on the training errors of LSSVM and RELM within the window, this paper proposes an adaptive hybrid soft-sensing model that switches between LSSVM and RELM. Compared with the previous MW-LSSVM, MW-neural network trained with extended Kalman filter(MW-KNN), and MW-RELM, the prediction accuracy of the hybrid model is further improved. Simulation results show that the proposed hybrid adaptive soft-sensor model has good generalization ability and prediction accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 152 ◽  
Author(s):  
Su-qi Zhang ◽  
Kuo-Ping Lin

Short-term traffic flow forecasting is the technical basis of the intelligent transportation system (ITS). Higher precision, short-term traffic flow forecasting plays an important role in alleviating road congestion and improving traffic management efficiency. In order to improve the accuracy of short-term traffic flow forecasting, an improved bird swarm optimizer (IBSA) is used to optimize the random parameters of the extreme learning machine (ELM). In addition, the improved bird swarm optimization extreme learning machine (IBSAELM) model is established to predict short-term traffic flow. The main researches in this paper are as follows: (1) The bird swarm optimizer (BSA) is prone to fall into the local optimum, so the distribution mechanism of the BSA optimizer is improved. The first five percent of the particles with better fitness values are selected as producers. The last ten percent of the particles with worse fitness values are selected as beggars. (2) The one-day and two-day traffic flows are predicted by the support vector machine (SVM), particle swarm optimization support vector machine (PSOSVM), bird swarm optimization extreme learning machine (BSAELM) and IBSAELM models, respectively. (3) The prediction results of the models are evaluated. For the one-day traffic flow sequence, the mean absolute percentage error (MAPE) values of the IBSAELM model are smaller than the SVM, PSOSVM and BSAELM models, respectively. The experimental analysis results show that the IBSAELM model proposed in this study can meet the actual engineering requirements.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Pengbo Zhang ◽  
Zhixin Yang

Extreme learning machine (ELM) has been well recognized as an effective learning algorithm with extremely fast learning speed and high generalization performance. However, to deal with the regression applications involving big data, the stability and accuracy of ELM shall be further enhanced. In this paper, a new hybrid machine learning method called robust AdaBoost.RT based ensemble ELM (RAE-ELM) for regression problems is proposed, which combined ELM with the novel robust AdaBoost.RT algorithm to achieve better approximation accuracy than using only single ELM network. The robust threshold for each weak learner will be adaptive according to the weak learner’s performance on the corresponding problem dataset. Therefore, RAE-ELM could output the final hypotheses in optimally weighted ensemble of weak learners. On the other hand, ELM is a quick learner with high regression performance, which makes it a good candidate of “weak” learners. We prove that the empirical error of the RAE-ELM is within a significantly superior bound. The experimental verification has shown that the proposed RAE-ELM outperforms other state-of-the-art algorithms on many real-world regression problems.


Sign in / Sign up

Export Citation Format

Share Document