scholarly journals The Variations of Thermal Contact Resistance and Heat Transfer Rate of the AlN Film Compositing with PCM

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Huann-Ming Chou ◽  
Jin-Chi Wang ◽  
Yuh-Ping Chang

The electrical industries have been fast developing over the past decades. Moreover, the trend of microelements and packed division multiplex is obviously for the electrical industry. Hence, the high heat dissipative and the electrical insulating device have been popular and necessary. The thermal conduct coefficient of aluminum nitride (i.e., AlN) is many times larger than the other materials. Moreover, the green technology of composite with phase change materials (i.e., PCMs) is worked as a constant temperature cooler. Therefore, PCMs have been used frequently for saving energy and the green environment. Based on the above statements, it does show great potential in heat dissipative for the AlN film compositing with PCM. Therefore, this paper is focused on the research of thermal contact resistance and heat transfer between the AlN/PCM pairs. According to the experimental results, the heat transfer decreases and the thermal contact resistance increases under the melting process of PCM. However, the suitable parameters such as contact pressures can be used to improve the above defects.

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1837-1846
Author(s):  
Mhamdi El ◽  
Elalami Semma

The lattice Boltzmann method and the particle image model are adopted to study a heat transfer problem with thermal contact resistance. In this paper, a new study involving an inclined interface of contact between two media is introduced in order to evaluate a 2-D heat transfer in the steady regime. A case of study and numerical results are provided to support this configuration. The obtained results show the effect of the thermal contact resistance on the heat transfer, as well as the temperature distribution on the two contacting media.


Atomic Energy ◽  
1962 ◽  
Vol 11 (3) ◽  
pp. 910-913
Author(s):  
O. P. Astakhov ◽  
V. I. Petrov ◽  
O. S. Fedynskii

2015 ◽  
Vol 821-823 ◽  
pp. 452-455 ◽  
Author(s):  
Zsolt Toth Pal ◽  
Ya Fan Zhang ◽  
Ilja Belov ◽  
Hans Peter Nee ◽  
Mietek Bakowski

– Thermal contact resistances between a silver metallized SiC chip and a direct bonded copper (DBC) substrate have been measured in a heat transfer experiment. A novel experimental method to separate thermal contact resistances in multilayer heat transfer path has been demonstrated. The experimental results have been compared with analytical calculations and also with 3D computational fluid dynamics (CFD) simulation results. A simplified CFD model of the experimental setup has been validated. The results show significant pressure dependence of the thermal contact resistance but also a pressure independent part.


2021 ◽  
Author(s):  
Lucas Arrivo ◽  
Steven Schon ◽  
Aaron P. Wemhoff

Abstract Data centers housing high performance computing equipment have large and growing rack densities, which pushes the limits of traditional air cooling technologies because of limited heat transfer coefficients. Therefore, on-chip cooling using so-called cold plates is emerging as a necessary cooling option for high-density electronics. The use of mini-channels or pins fins to enhance internal heat transfer area inside cold plates requires extensive micro-machining that is relatively time consuming and expensive for mass production. As an alternative approach, inserting and bonding pre-manufactured metal foams into hollow bodies are explored as a potentially inexpensive means to enhance the interior heat transfer area of cold plates. One key aspect of the performance of metal foams in cold plates is the thermal contact resistance in the bonding between the foam and the substrate. This project predicts the contact resistance using measurements of different foam types (pure Cu and Cu with oxide), porosities (63%, 80%, 93%, and 95%) and thicknesses (4 mm, 8 mm, and 10 mm). These measurements are carried out with and without the use of thermal interface material (TIM) pads. A theory is proposed and implemented to estimate the contact and foam thermal resistances, but further work is needed to gain confidence in the results. Observations suggest that different thermal behavior is seen for the Cu foams compared to the Cu with oxide foams, and that the use of TIM pads can achieve 10x to 40x reduction in overall thermal resistance for highly porous foams bonded on Cu substrates.


Sign in / Sign up

Export Citation Format

Share Document