scholarly journals Terminal Sliding Mode Control for Attitude Tracking of Spacecraft Based on Rotation Matrix

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Guo ◽  
Shen-Min Song ◽  
Xue-Hui Li

Two finite-time controllers without unwinding for the attitude tracking control of the spacecraft are investigated based on the rotation matrix, in which a novel modified nonsingular fast terminal sliding manifold is developed to keep tr(R~)≠-1. The first terminal sliding mode controller can compensate external disturbances with known bounds, while the second one can compensate external disturbances with unknown bounds by using an adaptive control method. Since the first terminal sliding mode controller is continuous, it is able to avoid chattering phenomenon. Theoretical analysis shows that both the two controllers can make spacecraft follow a time-varying reference attitude signal in finite time. Numerical simulations also demonstrate that the proposed control schemes are effective.

Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


2018 ◽  
Vol 41 (2) ◽  
pp. 405-416 ◽  
Author(s):  
Haitao Chen ◽  
Shenmin Song ◽  
Xuehui Li

This paper studies the finite time spacecraft attitude tracking control problem, while considering modeling uncertainty, external disturbances and control input saturation. A novel integral terminal sliding mode surface (ITSMS) is designed by combining the fast terminal sliding mode surface (FTSMS) with a low pass filter to achieve a fast finite time convergence rate for the control system, without input singularity. An auxiliary signal is used to compensate for the effects of actuator saturation. The basic controller is first formulated based on the ITSMS, fast-TSM-type reaching law and auxiliary system, in the presence of an external disturbance and input saturation. Then, an adaptive control procedure is introduced, which simultaneously handles modeling uncertainty and external disturbance, thereby creating an adaptive attitude tracking controller. The proposed controller provides a fast finite time convergence rate for the control system, based on the newly designed ITSMS, while simultaneously compensating for modeling uncertainty, external disturbances and input saturation, without restricting the parameter selection process nor requiring repeated differentiation of nonlinear functions. Finally, digital simulation results are presented and demonstrate the effectiveness of the proposed controllers.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiguo Han ◽  
Minghao Wang ◽  
Xunliang Yan ◽  
Hang Qian

This paper focuses on the potential actuator failures of spacecraft in practical engineering applications. Aiming at the shortcomings and deficiencies in the existing attitude fault-tolerant control system design, combined with the current research status of attitude fault-tolerant control technology, we carry out high-precision, fast-convergent attitude tracking algorithms. Based on the adaptive nonsingular terminal sliding mode control theory, we design a kind of fixed-time convergence control method. This method solves the problems of actuator faults, actuator saturation, external disturbances, and inertia uncertainties. The control method includes control law design and controller design. The designed fixed-time adaptive nonsingular terminal sliding mode control law is applicable to the development of fixed-time fault-tolerant attitude tracking controller with multiple constraints. The designed controller considers the saturation of the actuator output torque so that the spacecraft can operate within the saturation magnitude without on-line fault estimation. Lyapunov stability analysis shows that under multiple constraints such as actuator saturation, external disturbances, and inertia uncertainties, the controller has fast convergence and has good fault tolerance to actuator fault. The numerical simulation shows that the controller has good performance and low-energy consumption in attitude tracking control.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


2020 ◽  
Vol 29 (13) ◽  
pp. 2050212
Author(s):  
Zhi Gao ◽  
Zhihao Zhu ◽  
Yu Guo

For multi-spacecraft with actuator saturation, inertia uncertainties and external disturbances, a distributed finite-time coordinated attitude tracking control problem for the spacecraft with the communication topology containing fewer information paths is investigated. Aiming at reducing the communication path, a class of distributed finite-time state observers is designed. To speed up the convergence rate of the multiple spacecraft system, a fast nonsingular terminal sliding mode function is proposed. Moreover, an adaptive control term is proposed to suppress the impact of the external state-dependent disturbances and unknown time-varying inertia uncertainties. Further considering the actuator saturation owing to its physical limitations, a saturation function is designed. With the distributed finite-time observers, the fast nonsingular terminal sliding mode function, the adaptive update law and the saturation function, a distributed finite-time coordinated attitude tracking saturation controller is designed. Using the proposed controller, the follower can synchronize with the common leader with time-varying trajectory in finite time. Simulation results demonstrate the effectiveness of the designed controller.


Author(s):  
Qun Zong ◽  
Xiuyun Zhang ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Wenjing Liu

In this paper, finite-time fault-tolerant attitude tracking control is investigated for rigid spacecraft system with external disturbances, inertia uncertainties and actuator faults. A novel finite-time disturbance observer combined with a nonsingular terminal sliding mode controller is developed. Using an equivalent output error injection approach, a finite-time disturbance observer with simple structure is firstly designed to estimate lumped uncertainty. Then, to remove the requirement of prior knowledge about lumped uncertainty and reduce chattering, an adaptive finite-time disturbance observer is further proposed, and the estimations converge to the neighborhood of the true values. Based on the designed observer, a unified finite-time attitude controller is obtained automatically. Finally, both additive and multiplicative faults are considered for simulations and the results illustrate the great fault-tolerant capability of the proposed scheme.


2016 ◽  
Vol 40 (3) ◽  
pp. 853-860 ◽  
Author(s):  
Xuan-Toa Tran ◽  
Hee-Jun Kang

This paper introduces an adaptive control method for finite-time modified function projective lag synchronization of uncertain hyperchaotic systems. Based upon novel nonsingular terminal sliding mode surfaces and the adaptive super-twisting algorithm, a controller is proposed to provide robustness, high precision and fast and finite-time modified function projective lag synchronization without the knowledge of the upper bound of uncertainties and unknown external disturbances. In addition, chattering is significantly attenuated due to the inherited continuity of the proposed controller. The global stability and finite-time convergence are rigorously proven. Numerical simulation is presented to demonstrate the effectiveness and feasibility of the proposed strategy and to verify the theoretical results.


Author(s):  
Zeng Wang ◽  
Yuxin Su ◽  
Liyin Zhang

This paper addresses the finite time attitude tracking for rigid spacecraft with inertia uncertainties and external disturbances. First, a new nonsingular terminal sliding mode (NTSM) surface is proposed for singularity elimination. Second, a robust controller based on NTSM is designed to solve the attitude tracking problem. It is proved that the new NTSM can converge to zero within finite time, and the attitude tracking errors converge to an arbitrary small bound centered on equilibrium point within finite time and then go to equilibrium point asymptotically. The appealing features of the proposed control are fast convergence, high precision, strong robustness, and easy implementation. Simulations verify the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document