scholarly journals Ultra High Performance Liquid Chromatography Method for the Determination of Two Recently FDA Approved TKIs in Human Plasma Using Diode Array Detection

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Marwa Fouad ◽  
Maxime Helvenstein ◽  
Bertrand Blankert

Generally, tyrosine kinase inhibitors have narrow therapeutic window and large interpatient variability compared to intrapatient variability. In order to support its therapeutic drug monitoring, two fast and accurate methods were developed for the determination of recently FDA approved anticancer tyrosine kinase inhibitors, afatinib and ibrutinib, in human plasma using ultra high performance liquid chromatography coupled to PDA detection. Diclofenac sodium was used as internal standard. The chromatographic separation was achieved on an Acquity UPLC BEH C18 analytical column using a mobile phase combining ammonium formate buffer and acetonitrile at a constant flow rate of 0.4 mL/min using gradient elution mode. AµSPE (solid phase extraction) procedure, using Oasis MCXµElution plates, was processed and it gave satisfying and reproducible results in terms of extraction yields. Additionally, the methods were successfully validated using the accuracy profiles approach (β= 95% and acceptance limits = ±15%) over the ranges 5–250 ng/mL for afatinib and from 5 to 400 ng/mL for ibrutinib in human plasma.

2019 ◽  
Vol 2 (17) ◽  
pp. 38-42
Author(s):  
S. T. Adleyba ◽  
L. M. Kogonia ◽  
L. E. Gurevich ◽  
A. V. Sidorov

An own experience of effective treatment of a patient with a disseminated form of gastrointestinal stromal tumor (GIST) with a preparation from the group of tyrosine kinase inhibitors (imatinib) is presented.Relevance. Therapy of gastrointestinal stromal tumors is still a complex problem of modern oncology. Since 2001, a breakthrough has occurred in the treatment of patients with GISTO due to the successful use of a targeted drug from the group of tyrosine kinase inhibitors — imatinib, which is effective in the first line of inoperable and / or metastatic GISTs, and is also used for the neoadjuvant, adjuvant therapy of localized GISTs. The lack of response to therapy and, consequently, the progression of the disease, may be associated with a decrease in the therapeutic concentration of imatinib in the blood plasma. Determining the concentration of active metabolites of imatinib in the serum allows timely identification of potential causes of insufficient response to therapy and individual correction of the dose of the drug.Materials and methods. In order to determine the significance of the correlation between increasing / decreasing the dose of imatinib and achieving a therapeutic response, we used a laboratory method of high performance liquid chromatography to determine the concentration of imatinib in serum.Conclusion. Determination of the reduced concentration of active metabolites of imatinib in the blood plasma by high performance liquid chromatography with the detection of tandem mass spectrometry in a patient with disseminated form of GIST allowed to correct the dose of the drug and achieve a positive effect.


2016 ◽  
Vol 60 (8) ◽  
pp. 4734-4742 ◽  
Author(s):  
Tiphaine Legrand ◽  
Dominique Vodovar ◽  
Nicolas Tournier ◽  
Nihel Khoudour ◽  
Anne Hulin

ABSTRACTA simple and rapid ultra-high-performance liquid chromatography (UHPLC) method using UV detection was developed for the simultaneous determination of eight β-lactam antibiotics in human plasma, including four penicillins, amoxicillin (AMX), cloxacillin (CLX), oxacillin (OXA), and piperacillin (PIP), and four cephalosporins, cefazolin (CFZ), cefepime (FEP), cefotaxime (CTX), and ceftazidime (CAZ). One hundred-microliter samples were spiked with thiopental as an internal standard, and proteins were precipitated by acetonitrile containing 0.1% formic acid. Separation was achieved on a pentafluorophenyl (PFP) column with a mobile phase composed of phosphoric acid (10 mM) and acetonitrile in gradient elution mode at a flow rate of 500 μl/min. Detection was performed at 230 nm for AMX, CLX, OXA, and PIP and 260 nm for CFZ, FEP, CTX, and CAZ. The total analysis time did not exceed 13 min. The method was found to be linear at concentrations ranging from 2 to 100 mg/liter for each compound, and all validation parameters fulfilled international requirements. Between- and within-run accuracy errors ranged from −5.2% to 11.4%, and precision was lower than 14.2%. This simple method requires small-volume samples and can easily be implemented in most clinical laboratories to promote the therapeutic drug monitoring of β-lactam antibiotics. The simultaneous determination of several antibiotics considerably reduces the time to results for clinicians, which may improve treatment efficiency, especially in critically ill patients.


Analytica ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 57-65
Author(s):  
Fadumo Ahmed Isse ◽  
Sherif Hanafy Mahmoud

Clobazam (CLB) is a benzodiazepine that is used in many types of epilepsy. Although therapeutic drug monitoring (TDM) of CLB is not routine, there is evidence that TDM may be of value in conditions where pharmacokinetic alterations are suspected. Therefore, determination of both CLB and its active metabolite concentrations is essential for TDM. Herein, we present a simple and practical method for determination of CLB and N-desmethylclobazam (NDMCLB) in human plasma by high-performance liquid chromatography (HPLC). The drugs were extracted by hexane:dichloromethane (1:1, v/v) from 0.3 mL plasma. The separation was carried out with a C18 reverse phase column using a mobile phase of water:acetonitrile (57:43, v/v) pumped at 0.8 mL/min. The analytes were detected at 228 nm. The method was linear over the concentration range 20–500 ng/mL for CLB and 200–3000 ng/mL for NDMCLB. The intra-day coefficient of variation (CV) was <10% for CLB and <6% for NDMCLB, while the inter-day CV for CLB was <16%. The metabolite inter-day CV was <6%. The accuracy of intra- and inter-day assessments determined for CLB and NDMCLB was within ±10%. This paper describes a rapid, reliable, and simple method for measuring CLB and its metabolite NDMCLB in human plasma. This UV-HPLC procedure offers acceptable precision and accuracy to quantify CLB and its metabolite in human plasma.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


Sign in / Sign up

Export Citation Format

Share Document